
RD-A157 662 GENERIC SOFTWARE FOR EMULATING MULTIPROCESSOR 1/2
AlRCHITECTURES(J) MASSACHUSETTS INST OF TECH CAMBRIDGE

U LRS LAB FOR COMPUTER SCIENCE R M SOLEY MAY 85
UNCLRSSIFIED MIT/LCS/TR-339 N8 14-5-C-66iF/ 9/2 MI

m7hmhhhmmhhhhmirkhmhNEIh
EhhEohhmhhmhEI
mhEohEohmhhmhE

ommhhmmhhlm

Ai~ 132.0 M.

L 136-

1.1 ~140

MICROCOPY RESOLUTION TEST CHART

NATIONAl I RVALt IF STANBAPOT.lqA1-A

MASSACUSETT
LABRAOR FOR*a

C\II

41fD

(0i
[NV

UI1,

1

ML4

SECURITY CLASSIFICATION OF THIS PAGE (14/hen Date Entered)___________________

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 12 V SI N EIPIENT'S CATALOG NUMBER

MIT/LCS/TR-339 t 7 0
4. TITLE (and Subtitle) 5. TYPE OF REPORT &PERIOD COVERED

Generic Software for Emulating Master's thesis
Multiprocessor Architectures may 1985

6. PERFORMING ORG. REPORT NUMBER

_________________________________ MIT/LCS/TR-339
7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(,)

Richard Mark Soley DARPA/DOD
N00014-75-C-0661

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139 ____________

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA/DOD may 1985
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, VA 22209C)f
14. MONITORING AGENCY NAME & ADDRESS(iI different from Controlling Office) 15. SECURITY CLASS. (of tis report)

ONR/Department of the Navy Unclassified
Infomaton ystes Pogrm15a. DECLASSI FICATION/ DOWNGRADING

Arlington, VA 22217 SCHEDULE

IS. DISTRIBUTION STATEMENT (of tis Report)

Approved for Public Release, distribution is unlimited

17. DISTRIBUTION STATEMENT (of the. abstract entered In Block 20, If different from Report)

Unlimited

1S. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide If neceeasy end Identify by block number)

Computer architecture, emulation, simulation, dataf low

20. ABSTRACT (Continue an reverse slde It necosewy and identify by block nmber)

The expense of designiing. prototy-pir, and tcsting a new compuiter architecture (pariiticularly -

non-traditional supercompuLtcr architectuircs, suich is tile datalo%% imchine) is enor-mouis lie
relaitive infleibihity ofbhrdware to e.Npcriniental chang-es incr-eaes the nlecd to fuilly, test ai new

airchitecturail idea.

DD I 0A.". 1473 901 IC NOFI NOV 65IS OBSOLETE U casfe
S/N 10 (014-601SECURITY CLASSIFICATION OF THIS PAGE (When. Date Entered)

Unclassified
* .UM1TY CLASSIFICATION OF THIS PAGE(who Date Entered)

A software architectuikc for protot) ping and testing single- 11nd mulIItipr0cessor' Com1puter

ar-chilMtcrs Is ou 1 mcd. An overidl dcs gn is cliscusscd. notilb im 1" fic ccd for such a s) Stern,

hm it w~qild be t:.ccdt In dcl and Ivst ar11ious 'uAcIcctures. 'Ind pos."Ible II pL!IeItu -['6

\';Ir-MzS C\ 'JOtIIS .11)ki IISL'5 (d '"Ih a C!L'IiC W lt P111 Il)!. s' "te'u 'Ik dz~)LisciJswd. ftit

C\tcnISI()ns [(rI moddcliw,, shatred ic.-ottcc s~ sters, ceulll s' rrlhuariml SN steu. diili

Ji~trihtcd timntv. sliition sysrcnls. InI addition. 1%%t, iro (it thc JR. 1cm ac rIcid, ill

l).lrIicilr thie I a :i-cd I !.a I 1)at 11o(M .\rI~kclucrue1ntrur, %Iff10u5 HiC1liods ill %\11101i such a

1ac1101nc1i IW!', he Shi i1.Qilate under a gene-,ric emulation pickagc.

I Inr c- Ia i f JP-d

SECURITY CLASSIFICATION OF THIS PAGEI'Wbef Deto Entorod)

.... d

Generic Software for Emulating

Multiprocessor Architectures

by

Richard Mark Soley

May, 1985

Copyright © 1985, Richard Mark Soley.
The author hereby grants to the Massachusetts Institute of Technology

permission to reproduce and distribute copies of this document in whole or in part.

This research was supported in part by the Advanced Research
Projects Agency under contract N00014-75-0661 and in part by various

grants from the International Business Machines Corporation.

MASSACHUSETIS INSTrl'UTE OF TECHNOLOGY
Laboratory for Computer Science

Cam bridge Massachusetts

-2-

Generic Software for Emulating Multiprocessor Architectures

by Richard Mark Soley

Arvind, Associate Professor of Computer Science and Engineering, Thesis Supervisor

Abstract

- The expense of designing, prototyping, and testing a new computer architecture (particularly

non-traditional supercomputcr architectures, such as the dataflow machine) is enormous. The
relative inflexibility of hardware to experimental changes increases the need to fully test a new

architectural idea.

A software architecture for prototyping and testing single- and multiprocessor computer

architectures is outlined. An overall design is discussed, noting the need for such a system,

how it would be used to model and test various architectures, and possible implementation ,

paths.

Various extensions and uses of such a generic prototyping system are also discussed, including

extensions for modelling shared-resource systems, centrally synchronized systems, and

distributed timing simulation systems. In addition, two uses of the system are presented, in

particular the Tagged Tokcn Dataflow Architecture, noting various methods in which such a

machine may be simulatcd under a generic emulation package. / . " . /. ,, -. - ,

4 -. ,..';) .'.- j

''Io

Keywodk: coiiiputer architeclure, emulation, simulation, daLaflow"

"..... - 0-

Acknowledgments

First and foremost, I must thank Professor Arvind, my thesis superviser, for his
conitinued support and ideas for this project and thesis.

Many thanks go also to the other nmembers of (ihe Functional Languagucs and
Architectures group, past and present, who provided a stimulating environment in which to
work and contributed greatly to the finished product this paper presents. Tlhanks particularly
to Gregory Papadopoulos, Robert lannucci, Paul Fuqua, and Pll Chuan 1-iii.

A million thanks to my (now much larger) family: Joseph, David, Tim, Jack, Zo~in,
Maria Eugenia, Bernardo, and Clarita Wns.

Most important, i thank my wife and friend, Isabel Tfi&ese Szabb, for helping with
the ideas and execution of this thesis, and for her infinite support and love.

10
Barbara Lee &

Miclieline Miriam Monique Veronique

7y

-4-

CONTENTS

1. Introduction: Goals of a General Emulation Facility 7 -

1.1 The Multiprocessor Problem.. 7
1.2 The Multipr-ocessor Solution.. 8
1.3 Why Emulation?9 10
1.4 A General Emulation Facility ... 12
1.5 A Real M.E.F. Implenmentation ... 16

2. Structure of a Mfultiprocessor Emulation Facility.. 19

2.1 The M.E.F.'s Abstract Model of a Target Architecture.................... 22
2.2 M.E.F. Software Design Decisions.. 28
2.3 Program Outline... 40

3. Using an M.F. F as an Interpreter.. 44

3.1 An FEducational Experimnent: The von Neumnann Machine Interpreter .. 44
3.2 A Multiprocessor Experinient: The 'lagged Token Dataflow Emnulator . 46
3.3 [IYDA Implenicntation under the MIT MFF............................... 49
3.4 Levels of Interpretation .. 52

4. Using an M. I, F ay an Em nulator ... 56

4.1 Interpretation, Simulation, and Emiulation 56
4.2 Scheduling as an Approach to Emulation.................................... 58

5. Using an M. LF. F. as a Simulator .. 61

5.1 A Globally Synchronized Architecture....................................... 62
5.2 Distributed Simulation Approach to Synch ron ization..................... 67

-5-

6. Conclusions: Future Directions..

6.1 Other Uses of an M.1.F .. 71
6.2 MCSSiagC Passing Com1putationail Models 71
o.3 Protocol Testers 72
6.4 Education .. 73
6.5 Other Distributed System Uses .. 74
6.6 1 luman Networ-ks and Other Systems.. 74
6.7 Conclusion .. 75
6.8 Impact onl Future Machine D)esign... 75

References... 76

Appendix. Re cference Manual: T'he MIT Multiprocessor L'iulation Facility........... 80

1. Emu11lation Experiment D~escription... 80
2. Communication and Metering Functions.................................. 83
3. Use ol'the Control Panel ... 84
4. Functional hintraces to thle Control Panel 87
5. Example .. 88

.................... .- n -.

-6-

FIGURES

1. Architecture Design Path with Emulation ... I1
2. T et (Application) versus Physical(M. E.l') Architectures .. 14
3. Switch Specifications 18...18
4. General A bstract Structure to be Emulated by an M. E. F.. 20
5. Operational View of an M. .F.1 Emulation Experiment ... 27
6. Logical Structure of the Al 7MEF ... 29
7. Multiple Processor Dynamic Structure of the MIT MEF ... 39
8. A Sinple yon Neum ann Processor ... 45
9. Structure of the Tagged- Token Dataflow Machine ... 48

10. 'hree Dijfrent Approaches To 7TDA Simulation ... 55
11. 7ypes of System Interpretation/hl:'ulation/Sinulation .. 57
12. Scheduling Stages of a Balanced Pipeline... 59
13. General Emulation Scheme for a Clocked Architecture ... 63
14. Emulation of a Physically Separated Two-Domain System .. 65
15. Validation of a Test Protocol Implementation ... 73
16. Th e M EF Control Panel ... 85

..

.

............

-7 - -..

-7-

Chapter I

Introduction: ".

Goals of a General Emulation Facility

1.1 The Multiprocessor Problem

The world is full of large, complex systems made up entirely of very small, simple

components. Many of the interesting problems faced by scientists, engineers, and managers

today are some of these large-scale computation-intensive problems, composed of highly

interacting cellular parts. Unfortunately, the dimensions of these problems are generally such

that no computer in existence today can begin to supply the needed computational power.

'his does not eliminate the need for solutions to such problems, however. In a 1983

report, 1 the National Science Foundation noted a wide array of applications, both algorithmic

and inherently heuristic (i.e., either NP-complete or with unknown solutions) which cannot be

solved in a reasonable time using the fastest computational engines available today. Their

summary included:

* Simulation of large-scale biological systems on the cellular molecular level.

* Simulation of chemical reactions and other materials and electrical
research at the quantum mechanical level, where classical (and
simpler) physical methods fail.

* Simulation of cnormous fluid problems (i.e., global atmospheric modeling)
in order to forecast fluid movement. Immediate applications would
include accurate weaf'lor forecasting.

Modeling of large-scale astrophysical events, such as supernovae and star
births.

., ...-.... J...

-8-

*Modeling of global economic systems.

* Simulation engines for large collections of logic-level or transistor-lcvel

electronic circuits of VI SI proportions.

[Ihle list canl include applications wliich have much less algorithmic solutions, such as:

C (ontrol of large and complex robotic systems.

*Diagnosis of mnachine and system malfunctions, and su~ggestions for
corrective action.

*Diagnosis and treatment plans for hu1.man diseases.

* Knfo\% edge-based expert artificial intelligence programs for more
w~idcl - based areas. including real-time machine understanding of
coinniected huiman speech.

Vn:cil of these aIpphcaliols demands far more COMPutational power and speed th an thle

:111(t m lrgCSt CI n1 pu terS aValilahle today. 1The aiiiaiing Speeds of' today's su percoimiputers,

Nlich as theo ('ray - S (Cycle timle; 12 nanoseconds. maximui sustained comnputation speed

app\minliltLk 80 niegallopQ). or- the (yher 205 (cycle timec: 20 nanoseconds, about 50-

tilea t1 p i ple InI coiparis li to the combinatorial explosion of problem siz~e promised by
1t1C pr-AI Ibins ahom . Inl addi tio n. thle proibiitivye cost of thle supercomputers of today also

linilit" thleir 1isC1hilne1Cs. C'lcarl sonie departure from the architectures of today is called for, as

liricIrl scallint! ol'currenClt Computational po~%er will not handle the problems of today, and even

lc,,, thn sc ol t(iiorrow.

1.2 Thne A1ut1ipro-eksor Solution

since thle early days of computer tech nology'. the po ssihility of' interconHinectionm of

mull 11plc comlputcers in) ordcr to Ib0rin a larger. Faster uinit hi~s been considered. Many

Jtk liitcotrlml C\pciinmcnt, s lcll als llino)is' Ilhiac(IV sytc ad (arilg1ic Mellon's C'.inn11p 5

ltk 'e~~d to adhrcs,, tINS %ucili Itl ith t rcsi iitng ito it gredi depalrture hfom tile basic

olillpluit; s\!c(u :('Iiite 111r- cmu ioncde il 11) 10 h John \'on Ncimiii and his, colleagues. 6

-9-

Since the inception of the von Neumann flow-of-control design computer, single-processor

design has pervaded all commercial, and most experimental, computational structures. Even

multiprocessor designs have suffered the ill effects of the vom Neumann bottleneck, the

problem of limited access between processor (or processors) and lenlory. 7, 8, 9 Some modern

SUlpercoiputers attempt to overcome this problem by means of extcnsive pipelining within a

single processor 10 though this avoids any problem of memory contention among multiple

processors, it introduces either the need to re-code applications in a specially tuned

pipclined/vectoriied language, or to use high-powered program compilation techniques.1 1

This "brute force" approach to nmltiprocessing, including contended memory, poorly

or too closely synchronized processors, and a reliance oil progranmer-specificd parallelism

has not even approached the need for a scalable multiprocessor. In a scalable system,

doubling the number of processors in the system should double the system's performance; no

machine to date has yet come close to this clearly useful goal.

What we need, then, are protocols for connecting multiple processors into a scalable

system, and methods otfprogramming which limit hardware idle time and minimize the need

for programmer specification of parallelism. Research into exactly these issues is well Linder

way: possible architectures range from the datallow systems of Dennis 12 and Arvind 13 to

Intel's Ada-bascd iAPX-43214 to the Connection Machine15 to Xerox' Enterprise16

distributed computing environment, to M.I.T's Apiary system. 17 However, this increasing

body of literature alunI)st n]ever reaches any consensus, except in one area: construction of an

experimental supercoullIuter. they all agree, is costly.

Amassing the hardware and software necessary for implenmienting an entire

nultiprocessor machine can be expensive and time consuming, particularly flor a one-shot

statistics gathering evaluation of a proposed architecture. Projects generally spend well over

oc inillion dollars to get going. 1 ind often need to completely oMCrhaulI their (.signs halfway

th ro)uglh the work ol in plementation.

An anonymous corollary to Murphy's law goes: "You will only be able to do it properly

if you have to do it more than once.- Given the prohibitive construction costs for

sul ercomputers. the need to redesign midstream, and the difficulty of perlring mathematic

anal ses on proposed arcitctures betbre construction, we need an easy-to-use, high

pertormance, low cost, and highly accessible tool for constructing, rumning, and testing

- . -. - - - . . , .- .t. -t . -. " . . - - ° - " - ° .- ° " ' - , , -. .- ° " - - ", . - . .".... .° • •. "

- 23 -

Debugging tools provide a good example of these "false state variables." For
example, programmher-invisible machine registers, or other "spy" devices for tracing the
execution of the emulated machine, fall into this category.

2.1.2 Communications

The basic communication abstraction provided by the M.E.F. is quite simple; at the
lowest level, it provides two interfaces. The first, "receive, - simply guarantees to pick up and
return an message bound for the current T.E. No guarantee as to ordering of messages is
made or implied: this simaple function only guarantees to wait for any available input and
return any one of the pending inputs. (There are non-blocking interfaces to check for

pending input as well).

The more interesting primitive is "send." Given an outgoing message and a
destination I.E. identifier, the send function must forward the message to the proper
destination over the fastest available path (since there are generally multiple paths available),
choosing the path based on mesage length and destination. In addition, this primitive also
guarantees that by the time it returns to its caller, no further interaction with AI.E.F. primitives

is necessary to forward the particular message with which send was called. In other words, this

primitive must provide for any queueing, backout and retry, or other paradigms for sending
messages over multiple-access channels, and must not block the calling process except when
absolutely necessary (i.e.. if some pending output queue is full).

In addition to this simple abstraction, the M.F.F. provides a methodology for
metering network Lelays and forwarding node usage, based on a static or dynamic simulated
network map. which allows run-time calculation of the list of T. F.'s through which a message
niist pass to travel from some T. F. i to some other T.E.]j.

. . .

- 22 -

2.1 The M.E.F. 's Abstract Model of a Target Architecture

In order to emulate a proposed machine architecture, the emulation facility requires a

general model of such a system. With such a model, it can mirror the overall structure of a

system symbolically. The emulation facility's machine model consists of several atomic

objects, which are outlined in this chapter.

2. 1. 1 Processors and Processor State

The "hearts" of any multiprocessor system are, of course, the processors themselves.

The M.EF.. supports an abstraction, called a target element, which maps to a real

multiprocessor's single processors. [he representation of an instance of this abstraction is a

body of code that. mirrors the functionality of the proposed "black box," depending on

communication primitives proved by the M.F.F. The implemented M.E.F. system, as it

resides in the L.isp Machine environment, expects target element definitions to be expressed in

groups of I.isp statements (called "forms" or "S-expressions" by Lisp programmers). These

processors may hold local slate, much as a CI.U cluster definition has local state.22

In order to correctly imitate real machinery, the M.E.F. must supply a related

abstraction to the processor, called processor state. This abstraction allows the M.'.F. user to

model registers, real memory, and all other hardware state via the natural programming

language analog, the variable. The M.E.F. enforces inter-processor separation of variables, so

that the experimenting user may use global state within all processors of the same type

withot any naming conflicts. In other words, two processors may each have a register

abstraction with the same name (for instance, RO) without any accidental (or intentional)

overlap.

In practice. we have found that most writers of'.F. implementations include in their

T.F. model "'state variables" that are not really part of the state of the processor being

modeled (i.c.. do not represent a latched %alue in the final hardware of the T.'F.), but arc

included only to simplify coding of an implcmentation. 'I hcse include temporaries used in

computtion ()' a ItI.'s Iinal state, or an% other artifact of the functional simulation of the

IF.t. hardt arc. -I hcsc "falsc state ariabics-" are represented in the same way as other state

variables by a NI.I I system.

'_.A.!L*% _C :a.

T 7)

-21-

The basic abstraction of a multiprocessor which the M.E.F. enforces is a single

amorphous packet-switched communications medium surrounded by independently

functioning, asynchronous processing elements (TE.'s) with no shared state between the

T.E.'s. This seems to be the most general case for a multiprocessor configuration. An M.E.F.,

in addition to this overall system abstraction, supports lower-level objects which correspond to

the parts of a multiprocessor system. These include the amorphous interconnection network

supplied by the MEF and the simulated topology enforced on it: more important, however, is

the abstraction of a T.E. This is the basic unit of work in a multiprocessor emulation, a

state-containing procedural definition of a single unit of a parallel processor. In software

terminology, this T.E. abstraction is an abstract datatype akin to a flavor object in the Zetalisp

language,2 1 or a cluster in CLU. 22 These procedural definitions, taken with an

interconnection network and a communication protocol over that network, comprise a

complete definition of a multiprocessor computer architecture.

In support of these basic abstractions are a set of primitive functions, including

* A method of simulating the functionality of the target elements to be

modeled in the user's design.

* A method of recording, updating, and sensing local state inside each target
element.

• Some way of transferring state between two target elements, along the lines
of a packet-switched (or message-passing) or circuit-switched network,
or via local physical processing element channels.

* A method of' recording, statistics while programs are executed on an
emulated architecture.

• A simple control interface for starting tp, stopping, and examining the

running and stopped states of the target machine.

* Tools for developing and debugging the emulation experiment code itself.

* Tools for setting M.F.F. (physical processor) hardware and ofware

characteristics and parameters (e.g., network topology, error recovery
schema, etc.).

..

- 20 -

T . TE

Commulnlications

ligure 4: General Abstract Structure to be Emulated by an Ml. L. F.

- 19 -"

Chapter 2

Structure of a Multiprocessor Emulation Facility

For experimental prototyping of a proposed multiprocessor machine architecture, an

M.E.F. software must provide a basic system abstraction, composed of lower-level

abstractions closely coupled to the designs of systems architects, but far enough from actual

design decisions to support many different multiprocessor designs. A good general abstract

structure may be found in figure 4.

F.,

............. * **** *** *.* * *. ... bt

-18-

E thernet Specifications
Raw Link Bandwidth... 1.25 Mbytcs/sec
Switch Node Connections ... 1I x I
Useful portion of bandwidth ... 10%

Maximn1 total aggregate bnudwidth
10% (1 processor x I connection x, 1.25)125 Mlbyitcs/second

I Mbit/second

Circuit Switch .Specifications
Raw 1.ik Banidwidth .. 3 Mbytes/sec
Switch Node Connectionis... 4 x 4
Useful portionl of bandwidth ... 20%

kiMium total aggregate bandwidth
20% (61 processors x 3 connectionis x 3) 115 Mbylcs/second

-920 Mbits/second

PacA et Sivitch Specifications
Raw Link Bmndwidth .. 4 Mlbytes/sec
Switch Node Coninections... 8 x 8
Useful portion of bandwidth ... 80%

Max\i mumi total aggregate banldwidth
80%, (64 p rocessors x 7 connections x 4) 1,433 Mbytes/second

-11.5 Gbits/second

.,Iaxinmum, l ciive Commnunication liiks pet-IProcessor

*Raw Per- -1 iic Iatidlwidth

A lavincum lotl i.cgrcgaie IBandvidih

l'igiv 3: Switch Specifications

....................................

-17-

The first available local interconnection network, for both machines, was ten

megabit/second nominal standard Ethernet, using the M.I.T. Chaos network protocols. This

simple bus-topology network is still in use in the prototype, but severely limits

communications between the P.P.'s of the system.

At this writing, a high-bandwidth circuit switch based on the Bolt, Baranek, &

Newman Butterfly machine is nearing completion. The development of this hyper-cube

topology switch included an implementation of a general network channel adapter (NuCA)

for the Texas Instruments Explorer 20, in order that this processor could Ltilize the circuit

switch and future interconnection strategies.

Planning is also well under way for a high-speed packet-switched network to replace

this circuit switched network. The proposed packet switch will also utilize a hyper-cube

topology, though with bidirectional communication along each link. Development of the

packet switch is proceeding using custom and semi-custom VLSI design techniques. Current

target specifications for both the circuit and packet switches, and a comparison with the

available Ethernet technology, are noted in figure 3, below.

.. .

.

. ".. .

4. o

- 16 -

bottleneck could make it difficult to diagnose bottlenecks in the prototype architecture under

evaluation on a facility.

We also would like to have some flexibility in network configuration to support an

M.E.F. Flexibility in connection topology not only supports fault tolerance (via

compartmentalization of a facility), but also supports the above-nientioned goal of a

reconfigurable overall computation structure, in which an M.E.F. could be broken up into

simultaneously functioning separate parts working on different problems.

The last wish on our communications wish-list is traceability, i.e., the need to support

diagnosis of railed communications nodes or media during execution of an M.F.F. Support in

this area could also add to the understanding of an emulation via statistics of network traffic

and usage during execution of a real experiment.

1.5 A Real M.E.F. Implementation

An M. E.F. attempting to meet the above goals is in use and under further construction

at the M.I.T. Laboratory for Computer Science. We will refer to this implementation of "an

M.E.F." as the "MIT MEF," or just "MEF." In addition to support software (which is

described in the balance of this thesis), the M.E.F. is composed of the following elements:

A mix of Texas Instruments' Explorer and Symbolics' 3600 family Lisp machine

symbolic processors were used in the prototype M.F.F. implementation. These processors

were chosen for their general purpose high-performance architectures, designed for

multiprogramming symbolic processing (i.e., they are fully tagged architectures with

automated garbage collection). These machines also include productivity tools such as

bit-mapped graphic output and mouse-based graphic input, high-level networking support.

In addition, the open (non-proprietary) architecture and availability of microprogramming for

the Texas Instruments machine offered more support for the hardware work necessary to

interconnect the P.P.'s of the prototype M.E.F. in a high-bandwidth manner.

In order, of course, to follow the universe's standard policy of confusion and tendency

toward randomness.

-~~~~~,

.°.-, " °" ° . ° " °-. °" " ° . "J ."°"°° °' -'' •-i"i"
° ' '

"-'-'"......-..-..---.-...-............-.................... ,..,.,.

-15 -

In order to gain more emulation speed without astronomical prices, and to force

systems architects to begin thinking of computers in a distributed, multiprocessing way, an

emulation facility should be designed to execute on many parallel general purpose processors,
linked via a variety of communications media. To enable the construction of a parallel

processor such as the ME.F., there are several abilities required of the physical processing

nodes which make up the computational power of the system. Since the M.E.F. must be able
to implement multiple general purpose architectures, it must itself be implemented on

relatively general purpose hardware. In addition, ease of programming (particularly rapid
prototyping) in a well-integrated environment and support for multiple interproccssor

communications architectures simultaneously are important, since they allow fast

development of emulation experiments as well as room for experimentation with various
commun ications media and protocols.

All the node power in the world in an M.E.F. would be useless without some

interconnection scheme, a multiprocessor facility must have some linking mechanism.
Specific needs for a sufficiently general purpose hicility to support many different

experiments are outlined in this section.

The first requirement for a useful facility interprocessor communications interface is
that it be multi-master. A network that supports only a single master (such as a simple

single-master bus structure) is useless in a facility that needs to support several simultaneous
computations with free exchange of information initiated by any processor. Overhead to

support a single-master structure, with bus master interrupts from processor wishing to
initiate transfers, would probably render an M.E.F. unusable.

In addition, an M.E.F. should have a multi-path interface, to support multiple

simultaneous communications between processors. Without this ability, processors that are
relatively matched in performance could contend too much for the communications medium,

causing a thrashing effect not unlike paging performance degradation on an overloaded
timesharing computer.

Of course, an M.E.F. connection medium should be very high speed, with a

communications bandwidth on the order of the available processor bandwidth. A mismatch

in this regard could make the von Neumann bottleneck return in its usual form -

communications overhead between (in this case) processing elements. Such an imposing

. . -"- .

.-) - -.."-"." " .3 -, . . :. -? -3-) & : -... - , .. - . .- i . .-.-.. & /' . . i .) , -., • -.*-.% .

- 14 -

Target Architecture (Target Machine)

T . Communications

Target Elements

P/,y.vicaI Architecture (Phys~ical Machine)

Figure 2: Target (Application) versus P~hysical (Af.I'F) Architectures

-.13.- . ..

13-

constructed ME.F. should be capable of executing with any number of available P.P.'s using

any number of available interconnection networks of the same or different hardware and
protocol type. This ability also aids in a forim of "fault tolerance," wherein experimentation

can continue through a los s of some or all ol'the facility's equipment.

An M.F.F. design must itself be a multiprocessor in order to fbrce systems architects

to think in a distributed, multiprocessing way when he or she begins work on a new

architecture. Without the multiprocessing frame of mind. time can be wasted in fruitless

research into dead ends. Anecdotes about major systems that worked in simulation on single

processors and then failed while running in a multiprocessor environment are many. A good

example is a Multics experimental system which executed without flaw on a (single processor)

development machine, but failed quickly while running on a (multiprocessor) user machine. 19

We therefore add confusion to the differentiation of a multiprocessor system tinder
simulation or emulation, and the M.E.F. multiprocessor architecture itself. When we speak of
simulating or emulating a particular architecture using an M.E.F. as the construction tool,*

there is a constant confusion between the (1) architecture being tested and the archiiecture of

the particular M.E.F. implementation and (2) the elements of the architecture being tested and

the elements of the real M.E.F. host system. Throughout this thesis we will use the terms
"target machine" (or architecture) and "M.E.F." (or "host" or "physical" machine) to

differentiate between the emulated and real multiprocessors, and "target element" and
"physical processor" to differentiate between the computational elements of the two. Figure
2 displays this differentiation. Note that the phrase "target element" does not apply only to

the purely computational elements of a target architecture, but to all elements (including
perhaps memory, network nodes, etc.).

* Or, as the prototype MIT M.E.F. has been called, a "Multiprocessor SaMdbox" or

"Multiprocessor Playground."

. °. .

.

- 12 -

1.4 A General imulation Faciity

The point of the Multiprocessor Emulation Facility18 (M.E.F.) is to allow

multiprocessor architecture proposals that are still in the initial states of design to be evaluated

cheaply and quickly. by emulation and simulation.

The basic abstraction of the M•E.F. must include a basic con figurable multiprocessor

structure, with general purpose processors at each node of a group or interconnection

networks. Each target element of the proposed architecture is logically represented by

software, with all functional aspects represented. The user of the M.E.F. will write a

functional description of each different type of target element in his or her multiprocessor

system, which will be used to detail the logical structure of the general machine.

We stress the phrase target processing element, or T.E., in order to differentiate

between T.E.'s (the computation elements of a proposed architecture to be emulated) and

physical processors, or P.P.'s, which denote the processing elements of the multiprocessor

system (M.E.F.) performing the emulation.

Software tools to provide usage of this abstract structure with minimal overhead must

also be included, with primitives for the functional description of T.E. execution and -

interconnection. This includes all of the structure necessary to allow the M.E.F. user to ignore

the physical interconnection structure of the M.E.F., and instead concentrate on the

interconnection structure intended by his or her own research. Thus, a researcher using the

M.E.F. could simulate widely variant coupling strategies, from a loosely-coupled

packet-switched network to a tightly-coupled central memory multiprocessor, simply by using

the interconnection primitives which interface directly with one of the available

interconnection networks of the facility.

Another important goal of an M.E.F. is ease of use, via local- or wide-area networks.

This goal establishes the intent of using an M.E.F. in a "batch mode" as a processor of various

multiprocessor architecture proposals.

Reconfigurability and partitionabiliy. or the ability to execute multiprocessor

cimilations using varying physical structures, are also necessary. Since we might wish to

process several emulation experiments concurrently, or at least to continue experimentation

whilc some of the facility is down for repair or regular maintenance, it is of prime importance

for an M.FF. to he insensitive to particular P.P. or interconnection availability. Thus, the

.

. o° • . . • .-. °. .. •°. %... ... °°% "° ,.•.. -..... . .•."o..,'

* outlined in Figure 1; instead of' a simple nath of' design, simulation, and Finally

implemntation, we add a new path, emulation, which can proceed in parallel with any

* simulation effort or in lieu of a simulation effort, depending on time constraints.

Iitial Decsign

Simulation - mulation

I mplcmcntation

Figure 1: Architectur-e Design Path with Emulation

-10- "

siiulations (or emulations) of proposed architectures before a researcher commits to specific

hardware or silicon (VISI chips).

The remainder of this thesis outlines the goals, implementation, and uses of the

Multiprocessor Emulation lacilily, or M.E.F., under construction at the M.I.T. Laboratory for

Computer Science. 18 The author designed the software for the M.E.F.; specific design

lecisions from that work will be described here.

1.3 Why Lrnmulation?

Upon recognition of the complexities involved in attempting construction of a new

computer architecture, the step usually taken is simulation of the architecture. In order to

garner the important aspects of the target architecture, carefully written (and well timed) code

is constructed to simulate the running new machine. The effects (under simulation) of

different values fbr parameters such as interconnection protocols, buffer siues, and the like are

studied in order to ascertain the best structure for the machine to be built.

The approaches to system prototyping that will be discussed in this thesis are called

interpretation, emulation, and simulation.

*"Interpretation, the most general of the three, specifies that the prototype
mirrors the real architecture at some specified level, such as instruction
set or high-level language senmantics.

- Simulation specifies the general scheme of executing s)nle functional
definition of a prototype (functional simulation) while gathering timing fW
statistics expected while running the real machine (timing simulation).

* Emtnlalions mimic the actions of a system functionally without ally explicit
gatherifig of Ofeing i406rmation. Instead. the liming of the modeled
ari-chitccturc is implied by the scheduling of the ftunctional units
themselves.

L.acking the overhead ol tinling and synchroniiation to support timing, tihe emulation

" nl c shows lie greatcst promise of getting simulatcd restults in the smallest amount of tile:."

ill add itioln, it is ealsy to map the atclitcture (ila multiprocessor system onto a nultiprocessor

em itharin , y c i . 'I lie taw paili along %%hich architecture prototypers would follow is

.- . .

-24-II

2.1.3 Resource Management

One of the most important services provided by the M.F.F. is as an "abstraction wall"
between the architectural experimenter and the actual M.F.F. imlplementation structure. This
"wall" implies autornatic management of hardware and software resources within the facility
without the intervention of the experimenter. For example, though a user knows that a
certain target implementation contains certain state and related functionality, he or she does
not need to be aware of:

o How the M.E.F. represents the processor's state.

o On which physical processing element of the M.E.F. configuration the .+

target element is executing (unless the user wishes to enforce some
locality constraints Ibr efficiency's sake).

o How inter-processor messages are actually routed between processors, and
on which of the (possibly numerous) interconnection networks the
messages are traveling.

The above-listed services are walled off from the architecture designer, as they are
airtifacts of the M.E.F. structure itself, not the architecture under emulation. This frees the
experimenter from low-level emulation details, as well as creating a "clean" development
environment in which the low-level details are kept from creeping into the high-level design.
For example, details of how communications packets are routed between physical processors
on an M.E.F. should have no bearing on the design of an experimental processor using the

M.E.F. as a tool.

2.1.4 Metering

An M.E.F. is useless if it does not allow some sort of metering functionality to the
emulation experimenter. Therefore, in addition to the T.E. execution and state models, an

M.E.F. mujst support metering. An M.E.F. system shouild implement two types of mecters,
which are used in two separate ways:

.1•

:...'.... '..'-. ? .. - . ?. ..--.:' .- ? -. +. -.. -....- ..- . -.. .-.. -. ".. .. .-. . .

......... ~~ . ..

- 25 -

System-wide meters provide a way to monitor some activity as it occurs on
every T.E. in the system. For example. if we are interpreting some
nmachine's instruction set, we might want to meter how many emulated
instructions were executed during an entire emulation experiment.

Per-T.E. meters are much like T.E. state variables, in that they record
activity within a single 'I'.E. only. These are useful, for instance, for
measuring miemory faults on a per-emulated-processor basis.

Either of these metering abstractions is necessary to allow the user to store, interpret, and

. display the vital statistics of an experiment. For instance, it might be important for the
*. designer to know exactly how much of his or her inter-processor buffering is being used, both

dynamically (during emulation experimentation) and, more quantitatively, statically at the .-

end of an experiment. The user should be able to clear, update. and check on the values of
meters both at run time and post-experimentation time, and display them dynamnically in a

run-time console graph or statically via his or her own methods.

2.1.5 Control Panel

The last, and most user visible portion, of the M.E.F. abstraction is the MEF Control
Panel. In fact, this provides the only user interface between the M.E.F. proper and the

architectural designer, as well as between the user of the emulated machine and the running
emulation experiment. Hosted on any available physical prucessor that is capable of
communicating with cvery other P.P. of an M.E.F. system, the Control Panel provides means

of configuring and partitioning the available M.E.F. physical processors into an M.E.F.

system, loading and initiating the selected target architecture (emulation experiment) on those -

P.P.'s, and monitoring and debugging the running experiment.

• Under the MIT MFF system, the Control Panel is hosted on a Lisp Machine, just as any
other part ofthe MEF system.

- 26 -

Besides acting as a "bootstrap proccssor," or "virtuali front panel," for the M.E.F., the

*Control Panel takes the place of the bootstrap processor for the target (or emulated) machine,

- inlcludling primitives for initiating and booting the T.E.'s of an experiment as well as injecting

a starting message from "outside" of thc emulated system.

Figure 5. below, gives a ujser's operational view of the structure of ani M.E. F., in terms

* of what thc user mutst implement and how it. interfaces with the substrate.

- 27 -

ReCsource Management Control Panel

& Bootstrap Control

IM.lF.F. Supplied]

T. F. .E. .E. .E.* *

Global Statitistics Management [M .F.F. supplied]LProcessor
Lisp

StateValues
Variables

SingleF
I.E. Processor L isp

Structure FunctionalFucis

[User supplied] SpecificationLProcessor
Meters I

Figure 5: Operational View of an M. E. F. Emulation Experiment

.

- 28 -

2.2 M. E.F. Software Design Decisions

The abstract M.E.F. structure discussed above does not necessarily translate directly to

a real multiprocessor architecture. This section discusses a particular implementation of an

M.LF. to which we alluded previously. The MIT MEF, developed at the M.I.T. Laboratory

for Computer Science, was implemented under the Lisp Machine environment,2 1 connected

via a collection of packet-switched data networks. The Symbolics 3600 Lisp machine was

used for development, while Texas Instruments Explorers were used for most of the facility's
processing. The software systems available on these two machines are both based on the work

21of the M.I.T. Artificial Intelligence Lisp Machine Project and are thus comparable; the
structure and design decisions of the MIT MEF are portable across both as well.

2.2.1 Logical Structure

The MIT MEF. as it is implemented on general purpose Lisp Machines, is written in

lisp Machine Lisp and structured in a hierarchical fashion, outlined in figure 6. On top of the
resident L.isp Machine system software are two basic portions of the MEF, the static section

and the dynamic section. One may think of these as the definitional and runtime support parts

of a modern computer language, since in essence an M.E.F. implements a functional
description language for computer architectures. Above this, a MEF system user constructs -.

his or her fuictional model of an architecture, on top of which end users (architecture

explorers) conduct experimentation. Above the MEF system, as in any computer system, we
find two lcclk of "u.wrs:" the application (or systems) programmer, and the end-user of the

application program executing un the system.

..K

- 29 -

User of h'mulated Aachine

Applicaiotin jbr h'inulaled (Target) Aachine

l'inudation Experiment ' -

(Progranis to Emulate the Target Architecture)

MVEF MF, F
Static Support Dynamic Support '-

Lisp System Software

Figure 6: Logical Structure of the MIT MEF

This level of the model is straightforward; however, many design choices necessary to
implement the M.E.F. abstract model in the MIT MFF were not so obvious.

2.2.2 The Target Element State Abstraction

In particular, the target element (T.E.) abstract modl-a procedural box with an

output stream, an input stream, and some non-shared state-presented many choices for

implementation tinder the Lisp Machine environment. First we must note the requirements

of such an implementation.

First and foremost, the implementation of the T.E. abstraction must not require any

knowledge on the part of the emulation experimenter of whether his or her T.E. definitions

are to be executed on the same machine, or on multiple machines. In particular, an
implementation under a global-state machine (such as global variables in the Lisp Machine - -

sense) must provide a namespace "wall" between T.E.'s. As an example, multiple processes

.

- . ..-.---- .. - " .- , . . -." -. .. " ---- - -..-. ..------ - -.-- --'-.-.--" ..---..- '-'. '-'-- --.- --. -' -.-''' -- ---

-30-

under the lisp Machine operating system share global variable names (or static variables);

thus. implementation on a Lisp Machine using global variables for T.E. state storage would be

an incorrect implementation. since T. .'s executing on the same machine would overlap state,

while T.F..'s executing on different physical machines would not.

In addition, the architectural experimenter should not need to know how many T.F.'s

are executing on any given physical processor, or in particular which of his orl her T.E. models

is executing on which proce!;sor. 'Ihis means that the M.I[.iT. system must automatically

choose connection paths, as well as decide any issues of code copying between physical

processors participating in an emu, lation.

We must stress that an M.E.F. should support any number of different kinds ofT. F.'s,

and any number of each kind of T.E. For example, we may wish to model a shared memory

processor as N memory units and M processing units: this would entail the description of two

different kinds of [F.'s. One description would describe the activities of a memory units

while the second would functionally describe a processing unit. '[hen. an M.E.F. would be

directed to execute a model composed of N of the first and NM of the second.

'I he real issue is that care must be taken in implementation of an M.E.F. to preserve

the abstraction of the .E. model. The T.F. state model chosen for the MII" MEF system

allows the user to think of the state of a T.E. as global (static) variables which are local to each

h'. As was noted above, this model would not serve the purposes of an M.E.F. if T.E. state

were actually implemented in this way. but we felt that this abstraction was the simplest

possible model.

Below we discuss various possible implementation schemes for T.E. state under the

Lisp Machine environment, addressing such issues as code cop) ing, complexity of the model

from the user's viewpoint, and performance. All of these schemes assume that the M.E.F.

user is required to list the names of all of the "T. E. state variables" (or registers) used, so that

the M.E.F. can know what variable names a given T.E. model must be "closed over."

-31-

2.2.3 T. E. Abstraction via Flavors

Readers familiar with the Lisp Machine architecture at this point invariably suggest

the use of flavors to implement T.E. state. Flavors21 are a powerful object-oriented

programming concept, combining multiple inheritance and dynamically linked functionality

in a nessage-passing syntax. They implement a user-definable language type structure in

which types define function and state templates, much like the CLU language clusters 22

except that the finctions allowed to operate on a given type may be dynamically altered, and

new functions added.
From the T.E. state model point of view, flavors are the perfect implementation

vehicle. They support a template view of programming that well fits the philosophy of a

group of shared functions (e.g., a T.E. functional definition) operating on multiple similar

aggregates of state'(e.g., T.E. registers). Unfortuantely, the dynamic feature of the Lisp

Machine flavor implementation introduces great function call overhead. Since the functions

that operate on a given flavor can be added to, deleted from, or otherwise altered at any time,

calling a tIinction to act on a particular instantiation of a flavor (an instance) requires a

hash-table lookup. Since all of the functions defined to operate on instances of a flavor are

not known at compile time, and since Lisp variables are not typed at compile time, calls on an

instance cannot be compiled down to a machine function call. Thus flavors were ruled out as

an implementation mechanism for the T.E. abstraction.

2.2.4 T. E. Abstraction via Global Variables

Another possibility was to use Lisp global (static) variables. Unfortunately, although

this would be a straightforward implementation scheme and would support very good

performance, due to the reasons outlined in the beginning of this section (overlap of variable

references between executing T.E. definitions) this scheme could not support more than one

T.F. per physical processor. Since we need an M.E.F. to potentially support any number of

T. F.'s per physical processor, this idea was quickly scrapped.

........

--32'-

2.2.5 T.L. Abstraction via Dynamic Variables

There is, however, an extension of the Lisp Machine global variable concept. Under

the iLisp Machine operating system, global variables may be "bound" to different values

during execution of a particular Lisp Machine process. lhus, T.F. fInctional models each

could be executed inside its own process, with the values of iLs registers bound, and thus

separated from the registers of other T.E.'s executing on the same physical processor.

Unfortunately this scheme introduces an enormous performance penalty. It requires

that the Lisp Machine process scheduler must insure that bound variables for a blocked

process must be unbound when another process is awakened lr execution: in addition, of

course, the bound variables of tle awakened process must be made current at process-switch.

time. This scheme was attempted as the T.1F. abstraction implementation for the M IT MEF,

with remarkably poor results due to this process switching overhead (particularly with more

than three T.[.'s executing on a physical processor).

2.2.6 T.E. Abstraction via Packages

Another promising feature of the Lisp Machine that was considered was the package

model. 'This feature allows separation of variable namespaces at function definition or load

times, to proide some small amount of name separation under an operating system that is

hbsically supports a monolithic namespace and address space. We think of this scheme as a

poor man's segmentation," as it solves some of the problems of naming that were addressed

by the Multics segmentation scheme. 23 It must be noted that Lisp Machine packages are

completely unrelated to Ada packages,24 which are closer in spirit to the flavor concept.

Using the Lisp Machine package feature, each T.E. would be loaded into its own

separate namespace, and would simply address its registers as global variables inside that

narnespace. Unfortunately, even T.E.'s of the same type would be unable to share code (T.E.

function definitions), since each T.E. would need its code to address different namespaces.

'[he paging and virtual memory waste accompanying such unnecessary code copying ruled

out this concept Ibr the MIT MEl T.E. implementation.

...I
. '.....

- 33 -

2.2.7 T. E. Abstraction via Arrays Referenced (Indexed) Off a Dynamic Variable

Finally, a hybrid scheme was chosen that used some of the concepts of flavors with a

dynamically bound global variable. The MIT MEF uses a single bound global variable which

points to an array (slate block) which contains the current values of all I.E. registers for the

currently-executing T.F. At process-switch time, this single variable is unbound and bound to

the new context, a minor introduction of overhead. Accesses to T.E. registers are altered (via

macro expansion) to offsets into the current state block at compile time. This can be done

because users are required to list all of the registers to be used by each ".1F. model. RItn-time

access to T.F. register values is then accomplished by adding an offset (established at

compile-time) to a global variable-i.e,, a one-memory-reference overhead.

This memory reference overhead is the only disadvantage of such a scheme.

Unfortunately, however, since T.E.'s are presumed to make constant access to their state, this

overhead can be tremendous, as it introduces a 100% overhead in state memory reference.

Fortunately, this overhead can be alleviated by a caching scheme, in which the current state

block pointer is saved (at process-switch time, or at the time of the first T.E. register access) in

the CPU. '[his scheme will be utilized with the Texas Instruments Lisp Machines with the

introduction of a small alount of microcode to support the caching of special virtual memory

pointers on the processor board of the machine. This method of "T. E. procedure switching"

is the analog of the standard operating systems approach to multiprogramming process

switching.

2.2.8 The T. E. Execution Abstraction

Besides modeling the state of executing T.E.'s, we must somehow model the actual

execution ofT.F.'s based on users' functional descriptions. As we have alluded above, these

functional descriptions must be written in Lisp Machine Lisp for the MIT MEF; execution of

the descriptions, at first glance, simply entails the execution of interpreted or compiled Lisp

forms using references to T.E. state is was discussed above.

.- - -- - - - - - - -. I .

.

- 34 -

However, there is a choice for implementation of these T.E. execution -thrcads," or

"processes." The most obvious choice, in the case of the lisp Machine, is to use the Lisp

Machine scheduler and process abstraction, since it directly implements the T.E. execution

abstraction, running threads of Lisp code on separate stacks, blocking oin input/output

opcrations, etc. Therefore, bv default the MIT MIT' system calls the L.isp Machine system

software to create and run processes as the implcmentation of the T.F. abstraction. This

allows Ihe emulation experiment writer to mIo(.cl T.I-L's in a fully general way. as individual

machines that do I/O and computation in no pre-dtcermined order.

Untortunately, there is an overhead associatCd with process switching under the ILisp

Machiine system, which rises linearly with the number ol processes (and thus emulated T.F.'s).

This is causcd by the need to flush and re-fill stack buffers zand possible paging overhead to "

reinstate a previously blocked process.

The M Il M [FF allows users interested in maximum performance to use a slightly less .'

general model to attain some spee(up by avoiding process switching. In this model, T.E.'s are

required to be functional blocks that take a single message as input, dot some comiutation,

output icro or more messages, and then return to the caller. This allows the NI F system to do

its own "'T.L scheduling" by directly calling the I isp implementation of a F. F. in the same.

process as the M EF system. rescheduling another (or even the same) T.F. on return of the

model.

Although this system is not completely general. it does fill the needs of manty

enlilation experiments that can be modellcd easily in this more restrictive manner. We must

note, however, that this method of T.E. implementation carries another disadvantage: the

Ni..F. system will block forever until a T.E. abstraction returns, since there is no "block and

reschedule" facility within MEF. Thus, errors in T.E. implementation have the capacity to

halt execution of an entire emulation unless T.E. definitions are not allowed to call potentially

blocking routines.

°,I
..

- 35 -

2.2.9 T. L. and System Metering

The inplementation of the metering abstraction under the MIT MEF system is

two-fold, to support the two different types of meters. Per-T.E. meters are implemented

under the MIT MEF system in much the same way as T.F. state registers, that is, as an array

of meter values stored with the slate array. System-wide meters, however, present a range of

implementation choices.

I he most obvious choice would be to simply centrally record the values of all

system-wide meters on one of the physical processors taking part in an emulation run.

I lowever. this increases interconnection network overhead for no particular reason, since the

values do not need to be centrally collected until the user actually asks for the value of a

system meter.

Thericfire, the MII" MIF implementation collects the values of system-wide meters in

a distributed manner, incrementing local copies of each meter on each physical processor in

the M.E.F. When the user (via the system control panel) asks for the value of a particular

meter, a meter read request is sent to each physical processor taking part in the current M.E.F.

experiment- the rcsulls are then tabulated centrally and presented to the user.

2.2.10 Communications Software

This brings to light the issue of interconnection schemes for an M.L.F. The abstract

dclinition of an M.E.F. notes only that the details of packet communication between "F.E.'s

should be totally transparent. '[his means that:
i1

-rom the T.E. procedure's point of view. the network send primitive must
return "iminediately:" i.e., no further work on the part of' the T.E.
may be required in order to get the message to the destination TE. '
This implies that the iniplcmentaion of the send primitive must
automatically queue messages, backoff and retry, acknowledge if
necessary. or perform any other network management functions
necessary to transmit messages.

. .'

.

................ i.i:i:i:-

- 36-

* The actual interconnection network(s) should be accessed in a uniform

way. through a uniflorm send primitive (i.e., there should not be a
send- via-l'thernet function as well as a send-via-lIvpercube function,
just one generic send function).

Inter-T.E. messaging between T.E.'s executing on the same physical

processor should be accessed via the same send primitive as network
messaging, as the experinent writer is not aware of the actual physical
processing configuration of an Ciulation.

* Network input must be via a single receive function, regardless of the

physical and/or logical locations of the sending I.E.

The MIT MI-F actually implements simultaneous access, via a single clueueing send

primitive function, to foir inter-T. F. communications media. '[ie first is for F.E.'s residing

on the same physical processor. which communicate through a queneing mechanism much
25

like tnix pipes.' Ali communications requests, in both directions, are handled by the local

distributed portion of the M.F.F. software system, called outpo.sts. An outline of this -l

procedure is presented later in this chapter.

Ihe other three network interfaces connect to three different high-speed

inter-processor media, including a ten-megabit per second ring-topology Ethernet (executing

(haoS 2 6 protocols): a three-megabyte per second circuit switched hypercube-topology
27

network based oil the Bolt, Beranek, & Newman Butterfly switch: J and a four-megabyte per

second packet swilched hypercube-topology network developed at M.I.T. in cooperation with

the Intcrnational Business Machines Corporation.

Regardless of the communications path followed by the transmission of a single MEF

inter-T.F. message. the MEF sending and receiving functions provide a packet-switched

abstractin to all comniunicating T.F.'s. l'hus, though a message might follow f, & four

different types of routing based on the distance between the physical machines p, porting

two commulnicating T.I-.'s. and the size of the message being sent, the same functions are used

without retry to complete that communication.

* 'he last two of these networks are under development at this time.

1?

- 37 -

2.2.11 Main Control Panel

Tying (ihe entire MIT MEF system together is a Control Panel program that also

executes under the Lisp Machine operating system, either on one of the physical Lisp

Machine processors participating in an active e1.ulatioi experiment, or on another

(dedicated) processor. This "Control Panel" implements a bootstrap processor that oversees

tile activities of the current M.F.F. configuration of physical processors. Users issue this

program commands such as:

CONIFIGURF,: Set up a certain group of physical processors as an M.E.F.
lhis command begins a small overseer prograri on each P.P.
palticipating iII the em ulation, and establishes all necessary network
connections between each physical processor.

STA,,R-EMULATION: Given an emulation name, loads and begins the
emulation name(l, instating F.E.'s described by that emulation on the
participating physical processors and establishing the logical
connectivity between the T.E.'s as described by the emulation
experiment.

SET-IRACING: Enable a system-wide tracing facility to direct tracing
inlhrmation (specified by T.F. function descriptions) to the screens of --

each participating physical processor, or to tile Control Panel.

STATUS: Get the status of a running (or idle) T.E. on any physical

processor.

I)ElUG-rl:: Temporarily halt a T'.F.'s running lisp code and allow the
experimenter to walk through that T.E.'s active state, checking and/or
altering variable alIcs and restarting computation at any point.

SSIIUI)OWN: Shutdown the current emulation experiment, much like a
bN()lstrap processor shutting down a mainframe machine. [ialts all
VI. [75and returns their storage to tile L isp hecap.

..

..

0 Ce d ure 7TFDA I? esource Managemnent Unit:
loop begin

Incoming-.Token Read-Message ~
case Incoming-Token.D-Type

if 0 then begin /0 D=O, a system-manager token. Dispatch
on request type, reading system state
to find free resources for request. ~

Outgoing-Trokens :=System-Manager (Incoming-Token);
for each Qutgoing-Token in Outgoing-Tokens

Write-Message (Outgoing-Token.Destination-Pe,

Outgoing-Token);
end begin;

if 2 then begin /* D=2. a PE-control token.
Perform local housekeeping function. '

Outgoing-Token :=Pe-Control (Incoming-Tokeni);
Write-Message (Outgolng-Token.Destination-PE,

Outgoing-Token);

end begin;

end case;
end loop;

id procedure;

emulation start-up time, some number of 77'DA Processing Units are initialized along with

;ingie I TD A Resource Management Unit to control all system resources.

Somec results thiat show the magnitude of emulation experimentation that can proceed

a particular MEL.F, thle MI F MIT. are documented below. It must be noted that the MIT
FF, at this writing, is still using low-speed (ten mcgabits/second) bus commu11Lnications (i.e.,

hernect withi Chaos protocols).

- 50 -

procedure 711)4 Processing Unit:
loop begin

Incoming-Token :=Read-.Message ~

case Incoming-Token.D-Type

If 0 then begin /0 D=0, an ALU token.
Try to match with token in wait-match.

If single input operation, or match found,

call ALU to dispatch on operation type.
Match? := Wait-Match-Control (Incoming-Token);

if Match? begin

Alu-Operation :=Fetch (Incomlng-Token.Address);

Outgoing-Tokens :=Alu-Control (Alu-Operation);

for each Outgoing-Token in Outgoing-Tokens do
Write-Message (Outgoing-Token.Destination-PE.

Outgoing-Token);
end;

end begin;

if 1 then begin /0 D=1, an I-structure token.
Dispatch on I-structure request type, satisfy

read/write request and return answer to
requesting P.E.1

Outgoing-Token := I-Structure-Control (Incoming-.Token);

Write-Message (Outgoing-oken.Destination-PE,

Outgoing-..Token);
end begin;

if 2 then begin /0 0=2, a PE-control token.

Perform local housekeeping function. '
Outgoing-Token :- Pe-Control (Incoming-Token);
Write-Message (Outgoing-Token.Destination-PE,

Outgoing-Token);

end begin;

end case;

end loop;

end procedure;

- 49-

3.3 TTDA Inplenientation under the MIT MEF

[he 'IDA machine was actually implemented under the MIT MFE system at the

MIF I.ahoratory for Computer Science, as the first major enitlation experiment available.

Functional models of' all levels of the 'VDA were emilated, as well as interconnection

protocols as specified by an agreed specification.35" 18 Early emulation runs with this model

pointed out a severe lack of deep understanding in the area of deccntraliied processor cycle

and mernory space resource allocation and dcallocation. As a First curative step, an extra

processing element was added to the architectural deinition (and thus the emulation

experiment) to support centralized resource control; to allocate or deallocate any system

resources, each T.E. had to make a request of the resource managenicnt T.F. Obviously, this

became the main system bottleneck- at this writing, more experimentation is in progress to

solve the problem.

This solution is a good example of a "quick fix" to an architecture used to circumvent --"

unknowns in the problem and concentrate on the parts of the architecture that need

immediate attention. In the case of the JT'DA machine, the first question to be answered by a

M.F.F. was the validity of the processing approach; therefore, the resource management

problem was bypassed for future study without slowing down work on the processing units of

the architecture. An overall sketch of the implementation finctions for the TIDA looks like

this:

.

.

-48 -

3.2.3 i'mulation of the lagged-Token Machine

I he basic system architecture of the 'rrDA machine matches quite closely the abstract

M..F. model. An N-dimensional hypercube network topology is used to interconnect any

numbcr ol processing elements, each of which is a rather general-purpose pipelined CPU and

memory management tuit. Figure 9 outlincs the overall structure of the 'IDA.

P. I

-C- oP. F.

..

P.E.

N-dimensional hypcrcube
with N = 3 (8 P.E.'s)

Figure 9: Structure of the Tagged-Token Dataflow Machine

-

..

-47 -

computation state, CoIunDiLInications bandwidth compression, processor time-sharing, and so

on. Basically, daiaflow models engender more than their share of the problem of how and

where to apply computation storage and compuLational power, and how to cornmmflunicate such

data among StruCturally and geographically separated machines. 30 " 31

Un fort u nately, these huge problens never keep people from designing real hardware

to realize particular variants of the dataflow model, or even to use expensive (in monetary,

temporal, and humn terms) silicon design technology in a quest for a parallel dataflow

architecture. Several dataflow architectures have been shelved after great expenditures, 32 3

even though specializcd simulatic.i techniques were used before committing to hardware.

Obviously, a more flexible tool for datallow machine experimentation is oieeded to

avoid the financial and human expense: an M.E.F. exactly fits that need. In fact, the work

reported in this paper was originally prompted by a need to quickly and flexibly emulate a

variant of the Tagged-Token Datallow Architecture, a machine realization of the Irvine/MIT

U-Interpreter abstract machine model. 18

3.2.2 The Tagged-Token Dataflow Machine

The Tagged-Tloken Dataflow Machine is an architectural realization of an abstract

machine model developed at the University of California at Irvine, named the U-Interpreter. 8

This architecture utilizes an extremely low computational granularity, on the order of single

instructions on standard processors (i.e., addition and subtraction), to realize the nlaximurn

parallelism in general programs without prograrnmer specification ol'parallelism. In addition,

the memory model of this architecture inherently tolerates long memory latencies, as well as

multiple access to data memories without unduly constraining parallel execution. Both of

these capabilities are thought to be unattainable within the von Neumann machine
18, 34framework.

- 46 -

needs to generate an acknowledgment after receiving a write request (i.e., it must write to the

MEF a message directed at the CPU).

From the standpoint of a systems architect (in this example, perhaps a bus/backplane

designer) the flexibility to quickly and simply change an interconnection strategy and

processor interface without touching a soldering iron is unparalleled. Validation of a

parallel-processing design can be perftormed in a manner much more like the exercise of

modern programning: a tight edit/compilc/debug prototyping loop. rollowed by thorough -

specification and implementation after the underlying structure is well understood.28

We began this chapter by discussing a supposed "von Neumann, single-processor"

machine, and ended the last section with a multiprocessor view. We must stress that a

Multiprocessor Emulation Facility is a general tool for architectural design with all types of

parallelism, such as pipeline stages, distributed concurrent database systems, or multiple

processing elements. The power in the idea is the inherent ability to emulate any complex

system.

3.2 A Multiprocessor Experiment. The Tagged Token Dataflow Emulator

The preceding example use of the emulation facility is indeed instructive, but it does

not exercise the full abilities of the M.E.F., nor does it represent a particularly new or

experimental design. The experiment discussed below fulfills both of these ends.

3.2.1 The Dataflow Model of Computation

Though the basic novel ideas (in comparison to the von Neumann machine structure) of the

dataflow model are rather old in computer science terms,29 only lately have several different

variations on the old theme shown great promise. 8 , 12 In the dataflow computer model,

asynchrony and functionality form the key to a highly parallel computational model in which

programs can be run in a parallel fashion without programmer specification of parallelism.7

The major problems plaguing datafnow computation models today are the same twin

problems that have always plagued computer science and engineering, namely (1) where do

we put things. and (2) how do we get them from here to there. These resource management

questions apply to program and data storage allocation, processor structure for maintaining

. ..• -i'; "-. ' '.:'.--i "". ?. ". .. " . -.....'.-...-.

- 45 -

CPU MEMOR Y

II I
Processor/Memory Bus

Figure 8: A Simple Yon Neumann Processor

As can be seen in this simple figure, we view the asynchronous communications

network of the Emulation Facility as a single, synchronous connection (i.e., a bus) between
the two parallel processors. We say synchronous because all messages between these two

processors are queued by the communications medium; there is no "interrupt level" activity.

For example, a "memory write cycle looks something like this:

CPU (messaze direction) MEMOR Y
WRITE
ADDRESS

DATA

For testing purposes, we might alter this simple "protocol" by inserting an acknowledgment

by the memory:

CPU (message direction) MEMOR Y
WRITE --

WRITE ACK
ADDRESS ..

DATA

This kind of modification is trivial to make within the framework of an Emulation Facility-,

the CPU processor simply waits for an acknowledgment after transmitting a write request (i.e.,
reads from the MEF an incoming message from MEMORY), and the MEMORY processor

NanI

•. .,"-..-. .-• -, ., .. .:

-44-

Chapter 3

Using an M. I: F. av an Interpreter

3.1 An Eilucational Experiment: The Pon Neumann Machine Interpreter

A multiprocessor emulation facility is fundamentally a tool for multiprocessor

prototyping. In this and the the following chapter, we present possible uses of an MEF to

show the need for such a tool, and the use of such a tool. These particular prototypical uses of

an MEF were actually written and executed on the MIT M[F; 1 some results of those

interpretation & emulation experiments will also be presented.

'The simplest multiprocessor configuration in use today is the von Neumann style

uniprocessor, composed of one central processing unit, and one "memory bank. "Although this

is ai uniproccsSor in today's sense, it is actually composed of two fully)arallel processing units,

activating each other via synchronous or asynchronous messages over some type of computer

bus. Although the parallel portions of this configuration (we will call them simply the CPU

and the ME MORY) often lock, waiting for the completion of an operation in the other -

processor, there is generally no possibility of deadlock, and there can be some overlap of

operation if the datapaths of the CPU allow work to be done while a bus read or write cycle is

active.

Therefore we present a von Neumann style uniprocessor, viewed at the bus level, as

the world's simplest multiprocessor architecture. Figure 8 shows a view of the the processing

clements and 1l.cir trivial connectivity.

I~a

.....- "....-.........-..--....-..-...-.. ..,.-.-.------..--....-."..-"...---.-.--.,..-.......--..-..-..-.....?
............................. =.. %-,, X; .,"..:2 ""' ": '" :";: :; "•":-: ':-'" : '; '... ' :

-43-

/* Forward a message to a local or non-local T.E. 0/

procedure Forward-Message (From-Stream) begin

DestinationTE := Read-Byte (FromStream);

Message-Length Read-Word (From-Stream);

Message :- Read-String (From-Stream, Message-Length);

TEDescriptor LookupTE (DestinationTE);

/* If local message, place In local T.E.'s incoming

message queue. Else forward to proper P.P. /

If DestinationTE element-of LocalTEList

then Queue (Message,

TEDescriptor. IncomingMessages);

else Send (Message-Length, Message, DestinatlonTE,
Routing-Table (TEDescrlptor.PP));

end ForwardMessage;

/0 Create and initialize a Target Element. -

procedure CreateTE (Experiment, Control-Stream) begin

TEType := LookupExperimentTE (Experiment,

Read-String (Control-Stream);

TE := CreateTE (TEType, Experiment);

AddTE-toRunningProfile (TE, Experiment);

/I Call the user-specified Initialization procedure.

In_TEEnvironment (TEType.Init 0);

end CreateTE;

. - .*

-. '*.*

- 42-

/* Communications are now set up. We can expect
commands to arrive from the Control Panel, as

well as requests for communications from local

and foreign T.E. models. */

do forever

Input-Stream Await-Input (Command-Stream,

Routing-Table,

TETablo);

if Input-Stream = Command-Stream begin

/0 Input is from the Control Panel. /

case Read-Byte (Command-Stream)

if 'M' then Forward-Message (CommandStream);

if 'E' then Experiment :=

Setup-Emulation (Command-Stream); -

if 'K' then ShutdownTE (Comnand__Stream);

if 'S' then Shutdown (); -

if 'C' the CreateTE (Experiment,

Command-Stream);

/* Other local notification and control

functions are performed here as well.
end case;

end;

/* Input is from a foreign or local T.E. model.

else Forward-Message (Input-Stream);

/* Schedule any TE's that having pending input. This

will cause the procedural definition of an TE with

pending input to be invoked in the environment of

that particular TE. /

Experimont.SchedulngParadigm (Experiment);

end do forever;

end MEFOutpost;

-41 -

/0 Local M.E.F. Controller (OUTPOST), to be executed on each

P.P. of an M.E.F. configuration. This routine manages

the T.E. models executing on its local processor, while

managing communication to and from these T.E.'s as well

as M.E.F. control messages from the M.E.F. Control Panel.

procedure MEFOutpost (Command-Stream) begin

/* First, read local P.P. number (as allocated by

the Control Panel) and the total number of P.P.'s.

LocalPP Read-Byte (Command-Stream);

TotalPPs Read-Byte (Command-Stream);

/* Now set up communications with all other P.P.'s.

We use a "triangular matrix" technique: each Outpost

simultaneously passively waits for contacts from each

lower-numbored P.P., while initiating contact with

each higher-numbered P.P. See above for details. /

cobegin

for ListenPP from 0 below LocalPP

Routing-Table (ListenPP) :=

Await-Contact (ListenPP);

for TalkTE from LocalPP + 1 below TotalPPs
Routing-Table (ListenPP) :

InitiateeContact (ListenPP);
end; .fl

-40-

2.3 iProgram Outline

The M IT M EF software consists of three major parts, including (1) the Control Panel,

(2) interfaces to the M.E.F. for use by emulation experiment implementations, and (3) the

M.E.F. outposts, or overseers, executing on each P.P. of the M.E.F. This last portion is the

most interesting, as it represents the distributed "operating system" portion of the M.E.F.

software, executing configuration and control commands emanating from the Control Panel

and the user.

One particularly interesting detail of the operation of the MEF outposts is the

paradigm for interconnection. The Lisp Machine architecture presents the Ethernet

interconnection medium to the application programmer as a bidirectional stream connected to

a listening process (another stream) on the foreign physical host. Therefore, for

interconnection between outposts on the Ethernet medium, each outpost needs a stream

connecting to each other outpost.

It would seem that the simplest method to gain this array of interconnections would

be to simply have each outpost initiate a connection to each other outpost; however, the

bidirectional nature of the resulting streams would make such a scheme quite wasteful.

Therefore, each outpost uses its own Outpost identification number (which ranges from zero
to one less than the number of outposts, or P.P.'s) as a sort of "quicksort comb," passively

waiting for connection requests from lower-numbered outposts, and actively initiating

connection requests to all high-numbered outposts.

Besides simplifying the connection process, this scheme also insures that no outpost

will issue a connection request to a physical processor that is not yet executing the outpost

code, since the outposts are initiated on the P.P.'s in ascending outpost-number order.

Outpost operations are roughly outlined in the program below.

*Specifications for use of the MEF Control Panel and emulation experiment interfaces to
the M IT M EF system acpresented in the appendix of this thesis.

.. . .

.

L -39-

Physical Processor 2 Physical Processor I

Main Control IPaiti

I (B~ootstrap, Sliutdoi, etc.)

Outpost

- - - - - - - C~o 11Uun icat ionis --- - - - -

T. E

Physical Processor 3 Physical Processor 4

Figure 7: Mutiple Processor Dynamic Structure of the MIT MEF

A...

- 38 -

Figure 7 shows the overall multiple physical processor architecture of all emulation

runninlg Under the MIT MIT system. In this examleC there are Four participating p~hysical

processors, one of which is also hosting the Control Panel. The running CMuLation

experiment is comprised of eight target elements.

.

- 52 -

Lines of Lisp code to Implement the TTDA machine: 12420

Raw computation speed (dataflow operations/second): 600
Wait/match section buffer size (tokens/PE): 1024
Program memory size (words/PE): 16384
Maximum operations computed (at this writing): 800000

This first major emulation quickly pointed out the power of an emulation facility,
particularly the ease of alteration of a model experiment. This writer's favorite example of

this ability centers on an anecdote: early in the project, the 'ITDA emulation (lid not support

64-bit IEE- standard floating point computation, although the YVDA definition demanded

such functionality. A new programmer was put to the task of adding this ability, with only a

day's familiarity of the source code (though lie already understood basic dataflow concepts).

I-fe was able to add (and debug) the ALU functional code Ibr 64-bit floating point in one day

of work. It is precisely this reconfigurability and flexibility that one wants from an M.E.F.

3.4 Levels of Interpretation

For the implementation of the TTDA Dataflow machine under the prototype MIT

MFF the author chose a level of emulation modelling each P.E. of the 'ITDA machine as a

single T.E. in the M.E.F. domain. Therefore, each dataflow T.E. was modelled as a single

sequential process emulating the TI'DA instruction set and commucating with other

processing elements of the emulated machines.

Obviously, this is not the only level of abstraction at which such a machine may be

modelled. For example, the author could have chosen an approach in which the entire

multiprocessor was modelled as a single sequential thread, with no communication necessary

between elements. The implementation of such a machine simulation might have looked

something like this:

"-. - - - -

-53- .

procedure TTDAMachlne begin

Token := Head (TokensAwaitingProcessing);

TokensAwaitingProcessing ,

Tail (TokensAwaltngProcessing);

PE Token.DestnatonPE;

/0 Here simulate the operation of processing element

number PE, leaving any output tokens on the queue

TokensAwaitingProcessing. 0/

end procedure;

This program has no interesting properties from a multiprocessing point of view. Although it
will exhibit the behavior of a IIDA machine as viewed by a user, it simulates none of the

internal interfaces of the elements of the datallow architecture, and is therefore not

particularly useful for prototypical implementations. ltowever, the simple single-thread

approach to machine simulation is an acceptable input to an emulation facility.

Instead of going further away from the parallelism inherant ii the dataflow design, .

however, we can move toward it by modelling the internal pipelining of each processing

element of the ITDA. A pipelined hardware implementation of a TIDA processing clement

would include, for example:

An incoming token clueue manager.

• A Waiting/Matching associative token storage unit.

* An instruction fetch/ALU processing unit.

* A storage management unit.

* A 13F controller (system interface) unit.

* An ottgoing token queue manager.

tach of these components may be modelled as an indepcndant process, participating

sta cs in the pipelincd micromachitecture ofa IlDA processing element. Each of these T.E.'s

wmld acttmll cprcscnt only a small part of the overall machine being emulated.

- - - - -

. .~~~~~~• .. -

. '.

.

- 54 -

Again, this nmodel may be uscd to prototype a T[DA machine under a M.F.F.

architectur e. Although it would [Cequire more communication (and probably processing)
overhead, it is closer to the true design of a T[D machine, and thcrelorc perhaps more
usef-ul for some studies of dataflow computation. F'iguire 10 oullines the three levels of

intcrpretation noted] above. with some notes on the advantages and disadvantages of each

app roach.

-. ~~

- 55 -

Tag ged- Token

DIqJtfow

I Alacliine

Taking ildvantage of Parallel Design

Comm~un icalions Network

II

A.E. I .. P.,

Taking Advantage of Pipelined Design

WalIac

I-Structure PE Control

EbCVL

Figure 10: Three Different Approaches To TTDA Simulation

.

- 56 -

Chapter 4

Using an M. E. F. as an Emulator

In the preceding chapters, we used the term "emulation- quite loosely to represent

any use of an M.E.F. to interpret an architectural definition outlined by a machine designer.

In this and following chapters, we will narrow this definition to a particular method of

functional and time simulations of systems.

4.1 Interpretation, Simulation, and Emulation

As was noted in the last chapter, a system may be interpreted at any level. In the case

of the Tagged-Token Dataflow Architecture, this means that we may (1) interpret the machine

code for each target element; or, at a higher level, we may (2) interpret the machine as a whole

by executing high-level dataflow languages such as Id,8 or, at a lower level, we may (3)

interpret the intra-machine flow of control and data between the pipeline stages of a dataflow

processing element. However, this choice does not affect the scheduling of the simulated

activities of a system (i.e., the T.E.'s) during simulation; thus, it does not force such a

simulation to divulge timing information about a machine model executing under an M.E.F.

environment.

In this and the succeeding chapter, we will discuss two different general methods for "

garnering timing information from emulation experiments along with the simple functional

execution of the machine model. We divide the term "simulation" into three concepts:

Interpretation, as outlined above, specifics only that a functional
specification ofa machine is executed. No implicit timing information
collection is suggested.

* Simulation, ats will be outlined in the following chapter, specifies a system
intcrprctation that explicitly keeps timing information about the

-i
"- ,---.: .. : -.-- ---. -. ..--i -.--.. ---. '- ".--.---- --.-.. ..- . .-- ,-.- ' . -,. - . ---.. ---- i.-+ -

- 57 -

functional units of a simulated machine (Tl.E.'s) while the simlulation is
tking place.

Emulation, the topic of this chapter. specifies a systemn interpretation that

keeps no explicit timing information, but gather-s Such information
imiplicitly through use the of explicit scheduiling ot]. F. activity.

Figure 1I IOutlines the hierarchy of simulation methods as this thesis views it.

Interpretation

Emulation Siniulation

Imhplicit capture of liming information hLxplicit capture of thning injoination

Simp/e easily debuggable model ('apture mnaximuin parallelismn of simulation

Figure 11: Types of Systent Interpretation/l:'mulation/Sinulation

The definition of emulation that we use in this chapter is best observed in such

systemns as the Yorktown Simulation [ugine (YSIF). 3 This system, though it provided

architectural designers with exact timing analyses of their logic circuit, had no explicit

overhead in vol ved in maintaining tim inrg inftormiation (hiring simulation. Instead, the YS E

-58-

relied on timing constraints "programmed into" the circuit entered for simulation. Such
combinatorial logic circuits consisted of multiple stages of logic: a single stage would be
simulated before the next stage was begun. Thus, timing and inter-elcncnt dependence

intorniation was implied by the structure of the circuit as it was described to the inachine.

ILikcwise. an M.F.F. views emulation as a simlulation activity for which it need keep no

timing inflormation. Instead, an exact schedule of events necessary for the cmulation of a

system are specified with the definition of an emulation experiment, along with the functional

definition of the target elements of the emulation. [his simulation schedule can be as simple
as a round-robin operating system-like process scheduler. or as complex as a full
load-balancing priority scheduler. A complete M.E.F, implementation will allow any

user-specified schedule for T.E.'s executing on a single physical processor, along with a

method of specifying which T.E.'s will execute on each P.P.

4.2 Scheduling as an Approach to Emulation

In fact, a simple round-robin scheduling scheme is exactly the right model for the
emulation of certain systems. For example, emulation of a balanced pipeline, in which each
pipeline stage takes the same amount of real time (or at least a set amount of real time) to

execute is a perfect target architecture for enulation-style modeling. Figure 12 outlines an
execution schedule tbr a three-processor system, each processor of which is composed of a
balanced three-stage pipeline. Representing each stage of tile system as a T.E., a trivial
scheduler for each triplet of T.E.'s running on a P.P. would simply execute the functional

description of each stage one after the other, and then repeat. The time that the real system

would have taken to execute the pipeline four times, for instance, is easily calculated as four

times the runtime of the pipeline: the time taken to emulate the pipeline is irrelevant.

* Note, however, that several niethodologies for maintaining simulated timing information
automatically will be advanced in the following chapter.
** Note that by this definition, at the current lime the MIT MI-T is not a complete M.E.F.

implementation.

--..- - ..---....- .-.

- 59 -

Stage 1 2

Processor I Stage 2 ". '

Stage 3

Stage [tageSt
Processor 2 Stage 2 0"+0

Stage 3J"-?

Processor 3Stg2 0
.:.

Stage 1Stage e 3

Time 0 Time 1 Time 2 Time 3 Time 4

Figure 12: Scheduling Stages of a Balanced Pipeline

The main disadvantage of this model of interpretation is the inherent mismatch

between the M.F.F. implementation model and any shared-resource (e.g., shared miemory)

multiprocessor model. However, there are quite attractive reasons for using system emulation

as a simulation methodology. Emtilation under the M.E.F. environment is a good

"impedance match"' between the architecture of an M.F.F. and the general emulation

architecture. The M .. F. is comniposed of gneral-pu rpoe multiprogramming processor's

connected via sol. scection of high-speed networks-, a real piplingd multiprocessor is also a

set of multiprogramming (although space-division instead or tiFe-division) processors

i . T

keep the overhead of emulation rather low, allowing emulation of relatively complex

machines eXecuLting large problems. This is exactly what is necessary to make a

multiprocessor architecture suiccessful, one Must build the miachine and convince enough

applications programmers that the overhead of attempting thecir application on the machine is

wor th the time necessary to rewrite their applications for the new environmnlt.

-61 -

Chapter 5

Using an M. E. F. as a Simulator

The uses of a facility such as that outlined in this thesis continue far beyond the two

interpretation experiments presented in previous chapters. As even tile von Neumann

machine experiment showed, modeling of various quite different levels of parallelism can be

accomplished, including architectures that do not seem to map directly to the abstract

architecture of the facility itself.

The abstract structure outlined in this paper was chosen as the most general of

multiprocessor configurations, sort of the Turing machine of the multiprocessor world. The

skeptic will immediately note that it does not, however, directly support such multiprocessor

design ideas as synchronous processors (like the Connection Machine, or Illiac IV) 15, 4 or a

shared memory model (e.g., C.mmp). 5 However, this model is abstract enough to allow

prototypical implementation of even these diverse models of parallel computation; generally,

another virtual processing element is added to the emulation experiment definition to model

this shared resource (e.g., clock or memory) of the system. This is actually quite close to tile

real hardware implementation of such a system, in which a central clock for synchronous

operation or a central shared memory will actually be a separate subsystem of the architecture.

In addition, interconnection schemes other than packet-switching networks can be simulated

on top of our packet switch by using the packets as individual items in a continuous stream

communication scheme, and so on.

.7

- 62 -

5.1 A Globally Synchronized Architecture

As an example of an extension, we present a particular method of simulating a

globally clocked architecture on top oI'an M.E.F. Other methods are possiblc, of course, but

the most obvious relies on excessive constraints on message passing between logical

processors. To alleviate the expense of'this method, we prcsent an design which corresponds -

quite neatly to a globally clocked architecture on an intuitive level.

We first refer the reader back to figure 4, in which the general simulation or enmulation

experiment schema is displayed. Below, in Figure 13, is a modified copy of the schema, with a

new processing element, namcd clock, added.

- 63 -

T E. 7E

00-00

Figure 13: General Emulation Scheme for a Clocked Architecture

- 64-

In figure 13, each T.F. corresponds to a processing element in an emulation

experiment's definition, as usual. However, one special-purpose processing clement, the

clock, is added for global synchronization of processing. The clock T.F. has a simple

functional definition:

do forever begin

for each TE in (all normal T.E.'s} do
send (pe, "Clock Pulse");

(Walt for each T.E. to acknowledge the pulse.)

end

Fach normal T.F. in the emulation must then be sure to wait for a "Clock Pulse" message

before beginning any single synchronized computation, and then send an acknowledgment to

tie Clock '.E. when the computation is complete. As long as this protocol is adhered to, all

activity in the emulation experiment will occur in a globally synchronized manner.

In a similar manner, any prototypical architecture with central resource needs, such as -

a global clock, may be emulated on an M.E.F. For instance, a central (shared) memory system

may be emulated by adding a single special T.E. (perhaps named memory) which emulates a

memory subsystem by receiving read/write requests and processing them in a synchronized

manner, much as the memory processing element in chapter 3.

Not to belabor the point, this scheme of virtual expansion of the basic M.E.F.

architecture can be accomplished for arbitrarily centralized or synchronized systems. For

instance, figure 14 is a good emulated realization of a physically separated

telecommunications system, with multiple independent processing elements on each end (for

instance, for some complex image processing task), with each of the processor groups under

the control of a central synchronization clock.

. .-. .

- 65 -

F~oreigni linage Processor

L~ocal Imiage Processor

Real Imtage Transmnission System ..

P. E..

At. EK. F. Protypical Realization

Figure 14: Emulation of a Physically Separated Two-Domain System

[mulation of sy-stems suich as that cursorily ouitlined in figure 14, with two physically

rate but cooperating multiprocessor systems operating in two independent clock domnains,

help reveal (and thus solve) major skewing problems. For instance, the simple global

king emulation protocol mnftionedl above for a single limec donain systern certainly

- 79 -

5. Arvind & Robert A. lannucci, Instruction Set Definition for a Tagged-Token Data
IHow Machine. Computation Structure Group Memo 212-3, MI I Itboratory
for Computer Science, February 1983.

S. G. F. Pfister, 1 he Yorktown Sinlulalion Ingine: Introduction, Proc. /1h Design
Automation (onference, Las Vegas, 1982.

7. Randal F. B~ryant, Simulation on a DistributedS stem, Coiputation Structures
Group Memo 182, NI rI Laboratory lor Computer Science, July 1979.

i. Randal F. Bryant, Simulation of Packet Communication Architecture Computer
Systems, M.I.T. Lab. for Computer Science 1 echriical Report 188, November
1977.

). K. Mani Chandy. and Jayadev Misra.)istributed Simulation: A Case Study in
Design and Verification of l)istributcd Programs, IEEE 'rans. Software Eng.,
Vol. SF-5, No. 5, Septcmber 1979.

). louis Pousin & Flubert Zimmerman. A Tutorial on Protocols, Proc. IEEE,
Volume 66, Number 11, November 1978.

1. F. Guterl, In Pursuit of the (ne-Month ('hip. ,-lE Spectrum Magazine, Volume
21, Number 9. Scptcmber 1984, Ncw York. New York.

21

.......... '
- .4%

-78-

23. A. liensoussan. C.T. Clingcn, and R.C. Riley, 'lhc Mliltics Virtual Memorty:.
C'oncepts and IDesilgn. Comm. of the ACAI. Vol. 15, No. 5, May 1972.

24. Reference Man~ucdfor the Ada Programming L~anguage. Proposed Standard
Docunment. United States Department of [)efunsc, July 1980.

25. K. lhompson & 1). M. Ritchie, 1 lic UNIX lime-sharing System,
Communications of the ACA1. Vol. I7. July 1974.

26. Symbolics, Inc., PRlOT-i Networks and Protocols,; Vol. 7 of Release 5.0
documentation set, March 1984.

27. Rettberg. R., C. Wyman, D. Hunt. M. H-offman, P. Carvey. It. I lyde, W. Clark,
and M. Kraley, Development of a Voice Funnel.Svstem: IDesign Report,' Tech.
Report 4098, B~oll lBeranek and Newman, Inc., August, 1979.

28. G. IL. Steele. The IDefinition and Implementation of a Computer Programming
Language Based on Constraints, M.I.. Dept. of lEE& CS P1h.D. Thesis,
August 1980.

29. J. F. Rodriguez, A Graph Alodelfor Parallel Computations M AC-lTR-64,
Laborattory for Computer Science. MI F, Cambridge, MA, September 1969.

30. lD~iivl F. (Culler, Resource AManagement for the Tagged-Token Ijataflow
Architecture, S. M. Thesis, M lI Dept. of EE & CS, Cambridge, MA,
[December 1984.

31. A. J. ('atto. & J. R. (iurd, Resouirce Management in D)ataflow, Proc. 1981 ACM
(ionf Functional Programming Lang. and Computer Arch., October 18-22,
1981.

32. Donald W. Ox ley, Mot ivation for a Combined Data Flow - Conitrol Flow
Processor, Proc. SI'2S"' Annual Symp., 198 1.

33. D. Coite. N. 1lifidi. & J. C. Syre. The D~ata Driven LAU Multiprocessor-Systemy
Rcstilt~s & Perspectives, Information Processing 80, S. H. [.avington (Ed.),
North- lolland, 1980.

34. Arvind & Robert A. lannucci, A Critique of Multiprocessing vofl Neumann Style,
1'roc. of the /d11 Int'l. Symp. on Computer Architecture, June, 1983.

tie

- 77 -

11. 1). J. Kuck, R. H. Kuhn, D. A. Padua, 13. Leasure, and M. Wolfle, Dependence
kranhs and Compiler Optim i/at ions. Proc. 8 "' ACA' Symnp. Principles
P'rogrammiing Languages Jainary 1981.

12. J. B. Decnnis, Data Flow SuperconuLters. Computer, November 1980.

13. Arvind, V. Kathail. and K. Pingali, A IData Flow.Architecture with Tagged Tokens,
L.aboratory (for Com1puter Science,' clchnical Memo 174, M IT, Cambridge,
MA, September 1980.

14. J. Rattner, W. W. L atten. Ada determines architecture of 32-bit microprocessor,
Electronics. February 24, 1981.

15. W. 1). H-illis, 7'he Connection Machine (Computer Architecture for the New Wave),
M.I.TI. Artificial Intelligence Lab Memo 646, September 1981.

16. T. W. Malone. R. E. rFikes. M. 1'. Howard, Enterprise: A Mark et-lik e Task
Schediler for D~istributed Computing Einvironments, Working Paper, Xerox
PARC, October 1983.

17. C. E. Hiewitt,'lh Ij.Ajniar Network Architecture for Knowledgeable System,
Conference Record of the 1980 Lisp Conference, Stan ford, 1980.

18. Arvind. M. L.. Dertouzos.arid R. A. lannucci, A Multimrocessor Emlulation
Facility, lR-302, Laboratory for Computer Science, Ml IT, Cambridge, MA, -

October 1983.

19. Charles A. H-ornig, private communication on the Subject of Failure ofa H-oneywell
Mullics developmient systemi in a Multiprocessing environment for the first
time.

20. Gregory M. Papadopoulos, A Nullus Channel Adapter, T'anglewood Design Note
13. M. I.T. Laboratory for Compu ter Science, May 1985.

21. [D. Weinreb, and D. Moon, Lisp Machine Manual, M.I.T. Artificial Intelligence
Laboratory, July 1981.

22. Bairhara I .iskov, Alan Snyder, Russel Atkinson. and Crai Schaffert. Abstraction
Mcha~nismIs in CL.U, (Communications of the ACM, Volume 20, Number 8,
August 1977.

- 76 -

References

1. M. lardon. et. al., A National Comnputing En vironment for Academic Research,
National Science Founaion161, July, 1983.

2. R. M. Russell,' ie Cray-i Computer System, Comm. of the ACIM, Vol. 21, No. 1,
January 1978.

3. M. J. Kascic. Vector Processing on the C~yber 200, Control Data Corporation, 1979.

4. W. J. 11ouknight, S. A. Denenberg, 1). F. Mclntyre, J. M. Randlall, A. Hl. Samech, D.
L.. Slotnick.] i e Illizic IV System. Proc. of the IEEE, Vol. 60, No. 4, April
1972.

5. 11. 11, Mashburn, [he C.mmp/flyvra Project: An Architectural Overview, in
(.omnputer Siructures: Principles and Examples, D. P. Sicwioirek, C. G. Bell, A.
Newell (I (is.), McGraw-Hill, New York, 1982.

6. A. WV. fiirks, 11. 11. (ioldsine. J. von Neumann, Preljmiinary discussion of the
loizical dJeSign of an electronic computing instrument. fromi Collected Works of
John von Ncumann. Volume 5, A. [-I.T'aub (I.,MacMillan, New York, 1963.

7. Tl. Agerwala andI Arvind, Data How Systems, Computer, February 1982.

8. Arvind. K. P. Gostelow, and W. F. PILoufll, An As ynchronous Programnming
Language and ('ompuhing 4Iachine. Dept. of In formation and Computer
Science Report I R 114a, University of California, Irvine, December 1978.

9. G. M. Anidahl. Validlity of the single processor approach to achieving large scale
comptin caibi lities, Proc. 1967 AIIIS Spring Joint Computer Conf,

March 1967.

10. J. F. T horn ton, Design of a Computer, The Con trol Data 6600, Scott, Foresman
and Co., Glenview. Ill., 1970.

-75-

6.7 Conclusion

The thesis of this work is that an advanced tool for the emulation of computer

architectures (particularly multiprocessor architectures) is an extremely helpful component of

an effort in computer architectural design. Our examples of emulation experiments actually

designed for and executed on the MIT MEF clearly outline the successful application of fast

protyping methods and flexible debugging and testing features to the design and

implementation of complex systems.

This work has already led to the completion of a small, slow emulation facility; we

hope that it will also lead to larger facilities with more computational horsepower, enhanced

functionality, and more simple interfaces for architectural experimenters. Certainly the

extremely complex design demands in the realm of superfast multiprocessor computers call

for more wide-reaching tools for testing new ideas in a timely manner, and we believe that the

M.E.F. idea is the foundation of such a set of tools.

6.8 Impact on Future Machine Design

The September, 1984 issue of Spectrum magazine included a feature series entitled, In

Pursuit of the One-Month Chip, which outlined the methods and hopes for the future in the

area of very fast prototyping of integrated circuits (VLSI) to implement various processor
41architectures and other electronic designs. However, it completely shrugged off the entire

higher-level design problem, stating merely that "a well-understood design must be used." In

fact. the tools to accomplish such a higher-level design do not exist at the level of complexity

needed to complement the other circuit and chip design tools presented in the article.

The M.E.F. described in this thesis performs exactly those functions, providing a

'multiprocessor sandbox" in which ideas can be quickly invented, attempted, and either

discarded or completed in very little time. Though more work, particularly in the area of

user-controllcd dynamic network load scheduling and other resource allocation issues, is

needed to complete the ideas of M.E.F. structure, the structure outlined in this thesis provides

a strong basis for a useful and viable alternative and addition to the architectural design

schemes of the present. The impact on future computer design projects is potentially great, as

the full capabilities of prototypical emulations arc realized.

'-'.9

-°° ..

-........ '.*%~~°'

-74 -

that instructors do not wish to see in students' work. For example, a student can implement

the instruction fetch and effective address decode portion of an architecture to learn a

complex addressing schene, while the instructor supplies a basic CPU function and a memory

processor that accepts only absolute addresses, such as the one described in Chapter 3.

II addition, validation techniques similar to those mentioned in the section above can

be used to administer testing and grading of student projects, by watching and evaluating the

runtime behavior of architectural iniIlementations. Since descriptions of machine

architectures can be given and debugged quickly and easily in an M.F.F. environmcnt,

students can gain hands-on experience of the basic building blocks of computer science.

6.5 Other Distributed System Uses

Many other computer architectures, particularly distributed ones, can be emulated,

and thus evaluate(l, in an M.F.F. environment. These include distributed database systems,

fatilt tolcrant systems, communications networks (such as telephone systems), and so on. The

list is endless. Fach can be described in terms of processes communicating via fixed or

alterable communications paths- this mcta-architecture maps directly to the M.E.F. abstract

model of processing clemcnts communicating via the M.E.F. substrate.

6.6 Human Networks and Other Systems

In fact, there is no reason that the uses of an M.E.F. must be limited to high

technology applications. Many real-life situations in other sciences can be modelled in terms

of comnminicating processes. For instance, the asynchronous nature of an M..F. lends itself

to studies of stochastic processes and other statistical studies.

Outside of the realm of the "hard sciences," an M.E.F. can still be useful in such

studies as economic systems, geopolitical forecasting, and any other application requiring

large and granular modelling. The ability to alter emulations with little or no overhead

especially makes such a use of an M.E.F. desirable.

" -'- - .' " 7 ;" .' ,': "', " 7. " • , , "" ". ", " "- "i " ' " ' " •

-73-

Test 1'rolocol

Request>

< Acknowledge

Messagc 'lypc

Ready

II- I

Validation

Processor

Protocol Protocol
Tecst Processor Vi 1Test P'rocessor

A

Figure 15: Validation of a Test Protocol Implementation

6.4 Education

An M.FF. is also a perfect instructional tool for use by students of computer

architecture. It provides a cheap, fast tool for construction and test of architectures by

studlents ()f computer science. For example, students can be given example computer

arcitctuesas projects to implemert tunder an M..F., thus gaining true understanding of

architectural features such as addressing, microarchitectures, and so forth. Parts of such

architectures can be supplied a% separate T.E.'s in an eiilation, supp~lyinlg basic Functionaility

-72 -

6.3 Protocol Testers

Besides the obvious multiprocessor scheme noted, Chapter 3 hinted at another good

use for an M.E.F. In that chapter, we discussed a trivial computer architecture, viewing the

M. F. F. communications substrate as a interconncction bus. We introduced a simple protocol

for CPU/memory communication based on that substrate, and noted how expansion of such a

protocol could proceed.

In fact, an M.E.F. does not limit us to such a simple interconnection scheme or

protocol, as could be clearly seen in the hypercube network topology presented for dataflow

experimentation in Chapter 3. In fact, arbitrary interconnection schemes transmitting via

arbitrary protocols can be emulated under an M.E.F. environment, to allow objective

measurement of performance, simplicity, and leanness of a protocol design. It has been noted

that techniques for protocol specification and validation, though under development, are

currently quite primitive: 10 we believe that an M.E.F. can help alleviate this problem.

We envision use of an M.E.F. to emulate bus protocols, network protocols, and even

internet protocols, viewing processing nodes as communication hosts, bridges, gateways, or

even other networks in internet experimentation. In the simple host to host case, an M.E.F.

can be used to test, validate, and evaluate protocol implementations at any network interface

layer.
Figure 15 shows a test configuration for validation of interconnection protocols. The

processing element labeled -'validation processor" watches a stream of commands and requests

passing between the processing elements implementing a protocol under test. This validation

processor architecture can be can be used as part of a standards specification, with competing

implementations executing as the processor under test, thus forming a fast, reliable

checkpoint for standards validation without high implenentation expenses for vendors

attempting to provide protocols.

-..... ,.

., ". .

-71-

Chapter 6

Conclusions:

Future Directions

6.1 Other Uses of an M.E.F.

The ease with which emulation experiments can be altered and re-executed on an

M.E.F. hints at another, related, capability. Because of its malleability, an M.E.F. can be used

to emulate anY process or systcm that can be modeled as a group of commnunicating processes.
The scope of such systems is huge; we present here sonic examples, with some discussion of

implementation designs under an M.E.F. scheme.

6.2 Message Passing Computational Models

A common theme in much multiprocessor research today, particularly in the artificial

intelligence community, is representation of computation by message-passing "agents," each

executing on separate processing elements and communicating via sonic interconnection

network. A good example of this approach is the Actor 11 language and Apiary archicture of

Hewitt.17 This model of computation is an excellent analog of the M.E.F. general model, as it

represents computation as a set of communicating sequential processors. A.I. applications

written as message passing activities with no shared state fit exactly the M.E.F. general

abstraction.

.

- 70 -

The added clock delay apparent in the clock increncntation code for a regular

(non-source) T.I:F. above is a symptom of a problem with this methodology for distributed

simulation. Given the existence of cycles in the interconnection of 'l.E.'s (which would

represent Ilecdback loops and the like in real systems), the local clock values in any two I.E.'s

of a cycle cannot diflcr be more than the sun of the event delays around the cycle, which

might unnecessarily reduce asynchrony and thus parallelism Of the si l)L lation. In addition,

given the possibility of /ero-time simulation events, it might be possible that a cycle of'.E.'s

might get "stuck" at a particular clock value if a pending event of iero simulation time was

triggered in the cyci . A tero-time simulation e ent would trigger no update of the local

clock, and therclbre might not allow fu-ther event simulation in the local T.F. nor in other

I.-.'s in the cycle. Thus, an artificial delay may be introduced for any intcr-T'.E, connection

arc which "breaks" this possible zero-lcngth cycle. In other words, the artificial delay factors

are introduced so that the min mum delay around any given cycle in the network of simulated

I. E.•s is greater than zero, preventing deadlock.

This scheme. thouigh it allows much more parallelism in the simulation of a timed

architecture, does have the disadvantage of adding communication overhead which can

become cumbersome, especially as the time skew between local TE. values of the global clock

becomes large. However, the scheme has the useful feature of provable deadlock avoidance,

given the assumltions that (1) processes only output messages at firing time, and then remain

silent until the next set of inputs are available, and (2) unbounded outpunt buffering is

available. Given these assumptions, 1L has been shown 3 • 3 that such a simulation system can

only deadlock when all processes are waiting for input, which cannot happen. In addition,

there is a variant of this scheme, named Time Acceleraiion, 37, which recluires static analysis of

the interconnections of T.F.'s in a system to be simulated and guarantees far more asynchrony

in the simulation of a system model.

.~~~~ ~ ~ ~ .°

A

- 69 -

/0 Standard simulation element definition 0/
procedure TIE Definition:
static integer Clock Initial 0,

integer Old-Clock initial -1,

integer Upstream-..Clocks (Number..of-UpstreanijEs)

initial 0,
list Pending-Events initial NIL;

while Clock < INFINITY begin

/* Process all messages representing simulation

events which are now safe to simulate. 0/
while Pending-Events not equal NIL do begin

Event :=Pop-.List (Pending-.Events);

Clock :=Simulate-and-Send-Output-Messages (Event);
end;

/* If the simulation of pending events moved the clock,
send messages to all downstream TE's to notify.

if Clock > Old-Clock then begin

for each TE in Downstream-TEs do

Send-.Message (TE, Message-Type=Increment-Clock,

Source-T.E-Local..TE.
New...TimeClock+Delay(TE));

Old-Clock :=Clock

end;

/0 Process any Incoming messages from upstream TE's.
for each Message in Receive-.Messages () do begin

if Message.Message-Type =Event-Stimulus then

Add-to-List (Message, Pending-..Events);

else begin

Ups tream..Clocks(Message .Source..TE)
:~Message.New-Time;

Clock :Max (Clock,

endMinimumofArray (UpstreanLClocks))

end

endhl;

end procedure;

-68-

2. Calculates a new clock value for iself, which may also issued to T.E.'s
downstream.

The new clock value within a T.IU. is the earliest time that the global clock could have

counted to within that T.F.: in other words. it is the earliest possible simulation time for any

unreceived messaiges to be simulated Thus, it provides the time against which already- received

messages must be compared to decide if they arc "safe" to simulate. An event is "safe" to

simulate if it is the next event that would have occurred in the real system.

Note that this methodology (foes not provide a way to simulate events ofa real system

out-of-order that cannot be done in the general case in which T.F.'s are non-functional (i.e.,

have local state). It does, however, provide a method of sequencing events in the F.E.'s in a
way that preserves time ordering but requires no system-wide communications or shared

resources (besides the communications network itself). Nevertheless, the method avoids

deadlocking.38 A definition of a T.E. which follows the basic schema of Bryant follows:

/* Definition of the initial source (bootstrap) T.E. 0/

procedure Source TE. begin

/* Send out the Initial messages. *

for each Message In InitialStimulusMessages do

Send-Message (MessageType=EventStimulus, Message);

/* Notify all TE's immediately downstream we're done. /

for each TE in DownstreamTEs do

Send-Message (TE, MessageType=IncrmentClock,

SourceTELocalTE,

NewTime= INFINITY);

end procedure;

-4-

- 67 -

The ease with which our earlier clocking example can be changed in the light of a new

situation, and the close mapping of that change to hardware realizations of solutions of like

problems, is the exact purpose of an M.E.F.

5.2 Distributed Simulation Approach to Synchronization

The last section presented a simple paradigm for modeling globally clocked

architectures. Though the presented system is easy to understand and implement, it obviously

wastes much of the parallelism available in an M.E.F. Since some of the tasks performed by

simulated processes (T.F.'s) will be completed faster than others, some T.E.'s will remain idle,
waiting for clock pulses, which could in turn cause part of the M.E.F. substrate (physical

processors) to idle.

Another solution to the problem of simulation of system-wide clocking is available,
which can be used to potentially speed up simulations of architectures in an M.E.F. setting.

There is of course a trade-off, namely the amount of communications overhead. This scheme

is used in distributed simulation systems to increase simulation throughput (not simulated -

throughput, but the throughput of the simulation iteself) by distributing the clocking of the

simtulated system.

Basically, the scheme as outlined by Bryant 37 ' 38 consists ofa per-T.E. current view of

the global clock value, kept up-to-date by the local T.E. with no central control. In addition,

a per-T.E. queue of simulation activities that the T.E. is not yet prepared to simulate is kept.

Fach data message transmitted from one T.E. to another carries either a stimulus (event to be

simulated), or a timestamp, which records the earliest time that that message could have been

transmitted in the real system which is being simulated. When a T.E. acts upon an incoming

message, it

1. Calculates the output stimulus message to be issued, and

* Again we must be careful to separate the simukted machine from the real globally

clocked machine, the latter of which must idle some of its hardware if it is
implemcnted using standard clocking architectures.

-.-....................... ,....

-66 -

applies to each of the processor groupings (each clock synchronizes the actions of its local

processing elements). However, it does not solve the usual problems of multi-domain clock

skew that can be introduced by simulation speed differences between the two processor

groupings.

For example, suppose that the Local grouping ofigure 14, because of the nature of its

task or its particular implementation as an emulation experiment, acted far faster than the

emulated colmputation speed of the Foreign grouping. An M.,-..F. could quickly become

totally overrun by qucued messages pending for processing elements in the Foreign grouping;

this is essentially the cognate of clock skew in real multi-clocked hardware realizations.

As in the real hardware case, however, this can be solved; the solution that is simplest

for implementation in an M.F.F. environment suggests hardware implementations for system

clock skew. Basically, a new protocol is added between the local and foreign clock TE.'s of

the emulation to cause each clock to temporarily stop pulsing whenever the other clock is
skewed by more than some arbitrary number of pulses, waiting for the foreign activity to

"catch tip." Our simple clock T.E. definition from above would be changed to: -

integer local-pulse-number, foreign-pulsenumber

when (Foreign Clock Pulse Received)
ForeignPulseNumber = (Clock Pulse Number Received)

Locah.Pulse-.Number I

do forever begin

for each TE In (all normal T.E.'s) do
Send (pc, "Clock Pulse");

(Walt for each T.E. to acknowledge the pulse.)

send (foreign.clock.pe, LocalPulseNumber)

LocalPulseNumber = LocalPulseNumber + 1

wait until
LocalPulseNumber - ForeignPulseNumber < Max-Skew

end

- 80 -

Appendix

Reference Manual:-
The MIT Multiprocessor lEmulation Facility

[his appendix is a reference manual for' thle M.E.F. implemented by the author at the
* Ni. .]. Laboratory For Computer Science, in the Functional Languages andi Architectures

group, as part of the N(i Il Mi I+ project. In the discussions below, we assume familiarity with
the I isp Machine operating system and the Lisp Machine dialect of Lisp. The abstraction and
impl)lemen tation of tilc MUT MEF arc discussed elsewhere in this document.

1. ILnulatwon Experiment Description

In order to emulate a particuilar compuiter architecture, the M IT MIFF must have some
Sxtifi e\111er1im t dlefinitions as well as some dynamic run-time communications support. The
PLmublion I.'x/)riment lDescription describes the toplevel block Structure of an architecture to
he emulatedl. [he Ibilowing functions are defined:

(define-eiuai-.tioni-experimient experiment-aame & rest keywords)
This function gives the MF F all of the basic information about emulation experiment
expcriment-nam '[he following alternating keyword/value pairs may be used:

'interactive <7'/ NIL)> Specifies whether this experiment is
to be interactively executed, or via remote batch facility. Thle number of processors in*
,(n experiment may only be left for actual execution time if this keyword is set to 1'.

:-Iong-name <namie) Specifies a "pretty name" for this
experiment, for use i output labelling.

:,lzinbcr-of-prncessc." (v number / .read> - Specifies the number of logical
(target) pr-ocessing elements (F's) that should be emnulated by the MIFF for this
ex\perimlent. 'Ilime value ":read" specifies that this niumber should be prompted for at
emulation01 executionl time.

:configuration <'config) Specifies a configuration map for

-81-

this emulation experiment. The configuration map notes how many T.l'.'s of each
T.E. type in the current experiment should be executed, and to what logical -

"destination addresses" they should respond. •hel format of <config> is a list, each
element of which is a two-element list. The first element of this sublist should be -

either a logical destination number, or a list of (from to). where from and to are
expressions denoting a range of logical destination numbers. These expressions maybe arithmetic expressions on the variable ".'", which will be "bound" to the total
nu ber o .E.'s that are being executed. nes

For example, a configuration map such as "((0 CPU) (1 MEMOR Y))" spccifies that
there will be two T..'s total: at logical address 0 is a F.E. of type CPU, while at logical
address i there will be a T. E. of type MEMOR Y. A more advanced map is used by
the Tagged-Token Dataflow em ulation; it uses

((0 (- :n 2)) normal-process) ((- :n 1) manager-process))

which means, allocate :N- 2 "normal-process"T.E.'s at addresses 0 through .N- 2,
and allocate a single "manager-process"T.E. at address :N - .

.'message-handler (function) - Specifies that control panel user
messages (defined below) should be handled by the function <function>.

:shutdown-handler (function> - Specifies that the function
<function> should be called when the current emulation is completed, and the user
has requested that the MEF shutdown operations. This hook can be used to collect
statistics, etc., when an experiment is completed.

:left-graph ((label> (scale> f(nbars>J) -

:right-graph ((label (scale)[fibars>)) - Requests that the left (right) bar
graph display area of the MEF control panel be reserved, with the label <label>, a
bottom-to-top scale of <scale>, and a number of bars to be displayed equal to <nbars>.
The default number of bars if not specified is equal to the nuimber of T. E.'s emulated.

:routing-paradigm (type> - Notes that this emulation will follow
the given T.E. to T.E. routing paradigm. The MEF will simulate a particular
message-passing paradigm only to the extent of recording how many messages are
forwarded by each node of a simulated network. The <type> specification can be
.'NONL;, meaning that routing will not be simulated: :STATIC, meaning that the
routing table given by the :routing-map option should be used, or :D YNAMIC, which
notes that the routing information is not stable, and should be recomputed from the

'%°1

. ,, . • .

.-. ,'.-. .,.*- ,€... . ,.. ,-.-. ,..-.........,........ . :...-......, .. ., .

- 82 -

:routing-map function at each message-pass.

:routing-map (map) - Specifics the map of T.E. to T.E. -

routing to be simulated by this emulation experiment. The <map> may be a complete
route specification, such as:

((1 2)(1 2 3)(2 3 1)(2 3)(3 1)(3 12))

which specifies the routes from every T.E. to every other T.E. (for example, to get
from "'.F. number two to T'.F. number one, the route is 'F.E. 2 -> .E. 3 -> T.E. 1);
or it may be a function. This function takes three arguments (sending-T.E.,
destination-T.E., total number of T.E.'s in this experiment) and should return a list
noting the T. F.'s through which the message should travel.

.pe-implementation (type) - Specifics in which manner T.E.'s
should be executed. The .NORMAL option notes that T. .'s should be represented as
Lisp Machine processes. The faster, but less general, .FUNCTIONAL option requests
that "[.E.'s be implemented merely as calls to functions, which return after processing
an incoming message (thereby bypassing process-switching overhead). The fastestscheme, :ONE-i'ER-PROCESSOR, requests that r.E.'s be represented as direct callsto functional definitions within the MEF overseer process, with state represented as

Lisp global variables. This last option, though it causes emulated machine execution
to proceed more quickly, requires that no more than one T.E. may be executted on any
physical processor.

(define-processor-variables variable-set-name &rest variables)
I)cfines a new set of T.E. state variables (registers) for use by T.E. functional
definitions. The variable-set-name may be specified in fbllowing define-processor
fIorms to note what registers arc used by such T.E. definitions; in the isp code for
those 'l.E.'s, the register names noted in the accompanying define-processor-variables
form may be used freely as lisp global variables. The syntax of the variables portion
of this form are variable names or lists of the form (variable-name initialization).

(define-processor processor-type emulation-name variable-set start-function status-function
relative-load-factor & rest pe-meters)
Defines a o;c.,' T.E. type for the emulation-name emulation experiment, named
processor-r for which a functional definition will be specified. '[he T.E. registers to
be used by i definition are declared to be the set variable-set. The function called to
initiate this ti, pc of T.E. is start-function: this function will be called with the logical
addrcss of the T.E. being started and the total number of T.E.'s in the running
emulation. I lie status-function is called by the M [F to obtain the current status of a
running I F.; it is called in the scope of that l. .'s registers, and must return a string
noting the status of the I.E. "The relative-load-factor should he a number between

--

- 83 -

zero and one noting the relative CPU load for this type of T.E.; this information is
used to do per-physical-proccssor load balancing. The pe-meters named will be noted .'- -

as per-T.E. meters for each T.E. of this type.

(define-meter meter-name emulation-name)
Defines a system-wide meter named meter-name accessable to (and shared by) all

.E.'s in emulation experiment emulation-name.

(definef function-name experiment-name argument-list &body body)
Defines a function function-name as part of the functional definition of one of the T.E.
types of experiment-name. The argument-list and body arguments are the Lisp
function definition.

2. Communication and Metering Functions

In addition to the above purely static (definitional) support finctions, the MEF
system includes many Lisp functions to interface to run-time communications and metering
facilities. These may be broken down into two classes: functions used by T.E. functional
definitions, and functions to interface to the MEF Control Panel. We begin by listing the
MEF functions available to T.E. function definitions.

(write-message destination-processor array &optional start eid)-
Sends a message to the logical T.E. numbered destination processor. The message to
be sent should be in array, an art-8b or art-string Lisp array. Start and ena if given,
should be an inclusive starting index of the message in array and an exclusive ending
index in array, in the standard Lisp Machine Lisp style. Note that the receiving T.E. -

may be any logical T.E. in the current emulation, regardless of on which physical
processor such T.E. is executing or what interconnection schemes are necessary to
transmit the message. The sender also need not wait for message transmission
completion or retransmit requests, as all transmission details are handled by the MEF.
It must be noted that the receiving T.E. does not get any information from the MEF as
to which T.E. sent the message; if such information is necessary, the transmitting T.E.
should include its logical address in the message.

(read-message-byte)
Reads the next availahle incoming byte from any logical T.E. transmitting to the
current T.E. This is useful to dispatch on packet types, etc. This function will block
on pending input if there is no input available.

(read-message array &optional start end)
Read any available inceming message that the MEF has directed from another logical
T.E. to the current I.E. The message will be read intc array, which must be an art-8b
or art-string array. If start and end are given, the incoming message will be read into
array starting at the inclusive index start and ending at the exclusive index end

. .. . ~. - • . - . - - - % . - ,- - .- • . . -. J-:-.- -, .?. '..-........."."..................................'....."- ..-.--. .." .."..-...".-.....-......-...".'. -"........ -"-....-.......'...

- 84 -

Otherwise, any incoming message will bc used to fill thc entire array. 'This function
will hang until the enough incoming bytes arc received to Fill the specified portion of
array.

(incrcincnt-iiwter meter-name)
Increments (by one) the system-wide or local-Ir.E. meter meter-name. A~let-name
must have been declared previously by deine-cmiulalion-experiicnt or
dclinc-proccssor.

(dccrcmcnt-nicer meter-name)
D)ecrements (by one) the systemn-wide or local-I.E. meter meter-name. Aleter-name
must have been declared previously by dcfine-cmnulation-cxpcrinicnt or
define-processor.

(clear-meter neter-name)
(Ctears (sets to zero) theC system-wide or local-I.E. meter meter-name. Meter-name
must have been declared previously by define-emulation-experiment or
define- processor.

3. Use of the Control Panel

In order to provide a "bootstrap processor" environi-nent for configuring, starting up,
and shuttting dtown emulated architectures, the M [F includes a Control Panel system,
avaiilable to L isp Mlachine tiscis by selecting the NIIKF window (via <Select> -Period or the
System Menu). [he frame that will be displayed looks like figure 16.

.............................

- 85 -

f -Physical Processors Menu

User-Defined Dynamic Bar Graphs

CHERRY '.
FLAME

OAK
ORFEO

75 7111 28
Tokens Waiting (scale 100) 1 Structure Reads Deferred (scale 30)

Outpost 0: Selected emulation e1xperiment OF.
Outpost 1: Selected emulation experiment OF.
Outpost 1: Target element 0 (NORMAL-PROCESS) Initiated.

Outpost 1: Target element 1 (MANAGER-PROCESS) Initiated.
Processor 1: Boot program running.

Processor 1: Linking complete.

MEF Controller: Start-Emilatlon DF :Number-Of-Processors 2
MEF Controller: Boot-OF (1)
MEF Controller: Link OAK:>ID>invoke.df

MEF Controller: Run FACTORIAL

User Command Input Windo +

MEF & Target Element Output

Figure 16: The MEF Control Panel

Clicking on the physical processor names in the menu on the left side allows the user
to list the real Lisp processes' and emulated T.E. processes' status on foreign physical
processors, or to terminate such processes. In addition, the following commands may be
typed to the Control Panel's input window to use the MEF system:

Clear-Configuration r
Clears any cached information about the physical configuration of the MEF system

M7-- .7- --

- 86 -

(i.e., which physical processors the MEF system is currently using).

Configure Emulation .'Number-Of-Processors Integer]
Conligures the physical description of a MEF system, allowing the user to specify the
physical Lisp Machine processors that are to take part in the current emulation
lacility. TIhis is the main interlace Ibr the support of the M FF's rcconligurability and
partitionability. If the system has not yet been configured, this command will lirst ask
Ior the source of a list of processors. lhree answers are possible:

E (Enter List) - The names of physical processors to
take part in this use of the M EF are taken from the keyword, one at a time. This list
should be terminated by pressing the <End> key.

R (Read from File) - The names of physical piocessors to
take part in this use of the M EF are taken from a file: the MEF will prompt for the
pathname of the file. The file should contain physical machine names, one on a line.
Lines beginning with semicolons are ignored, and may be used fbr comments.

F(Find Automatically) - All physical processors at the local
development site that are capable of running M EF are automatically found and used
as part of the current emulation facility configuration. This process takes a few
minutes.

After the physical processors to be used in the current configuration have been
specified. connections to each machine are made and a MEF system process is created
on each participating machine. If an emulation name was specified in the command,
the Start-Emulation command is executed with that name.

Debug-Processor Address
The logical T.E. executing with destination address Address is halted and forced into
the i.isp debugger, with display routed automatically to the MEF Control Panel, -
allowing the user to inspect and modify the internals of the TE. as well as restart or
terminate its function.

More-Processing ["On / .OfJJ
Turns more processing in the (central) MEF output window of the Control Panel on
or off, to allow leisurely inspection of its output or to ignore it.

Outpost-I ,ogn User-Id Host-Name
Prompts for a password (which is not echoed), and causes all foreign processors
participating in the current emulation to log in to Host-Name with the login identifier
User-ld, so that foreign machines may freely use Iile systems ,)thor than their own.

....... .. .I
.

.

.'' . *." . - " .".". h 3 .. I - . -. -.. . - - -,_ .- . . , . ° . . . , .. - - .- , . .

- 87 -

Set-Bar-Graph [On / :OfJ"
Turns the Control Panel bar graph displays on or off, to allow faster operation of the
MEF.

Set-Tracing [Off[: Locall :Central/
Reroutes all tracing messages sent by logical T.E.'s. If .Off is selected, no tracing
messages are displayed anywhere; :Central specifies that all messages should appear in
the output window of the Control Panel, and :Local requests that tracing messages
appear on the screens of originating physical processors.

Shutdown :Complete
Shuts down the current emulation experiment, terminating all communications and
T.E. implementations. If .Complete is specified, all foreign MEF processes are also
destroyed and inter-machine communciations dropped.

Start- Enmu lation Emulation :Number-Of- Processors Integer
Begins the emulation experiment named Emulation, which must have been defined
previously via define-emitilatioii-experirnent. If the .Number-Of-Processors option is
used, then the number of T.E.'s specified will be used; otherwise, if the emulation
does not specify a number of T.E.'s to be used in this emulation, the user is requested
to supply a number.

Status [Pe-Number/.'All,
Sends status messages to the T.E. at logical address Pe-Number, or to all T.E.'s if:All
is specified. The MEF system actually handles this request by calling the
user-supplied status function in the context of running T.E.'s.

4. Functional Interfaces to the Control Panel

The following Lisp functions may be used by I.E. implementation functions to
interact with the M EF Control Panel functions:

(write-error-message format-control-string &rest format-arguments)
Write a logical processor error message to the MEF controller for display. The
message, generated by the format arguments given, is displayed in the output window
of the Control Panel prefixed by the sender's T.E. logical address.

(write-display-message format-control-string & rest format-arguments)
Write a logical processor message, not denoting any error, to the MEF controller for -

display. The message, generated by the format arguments given, is displayed in the
output window of the Control Panel prefixed by the sender's T.E. logical address.

(write-user-message array &optional start end)
Write a "user message" to the emulation experiment-defined message handler

"%'

21~:.-.... .::..........-,... ... -. ,..-..................:. . -.. ...

- 88 -

residing in the controller. When this message is received by the Control Panel, the
Tuser message" handler (delined by the .message-handler option to
deine-eniulation-experiment) is invoked with the message as an argument. An
additional argument, a stream on which to do output. also is handed to the message
handler when it is invoked.

(senil-tracing-nmessage format-control-string &rest format-arguments)
Print a tracing message on the current tracing output stream, which is set via the
Set-Tracing Control Panel command.

(send-gra ph-message graph-display-select bar-number height)
Sends a message to the Control Panel updating one of the bar graph displays.
Graph-display -select may be zero or one, signifying the left and right bar graph
displays. Bar-nmiber selects the bar to update, while height specifies the relative
height to which to set the bar. If the bar graph displays are disabled (via the
Set-Bar-Graph Control lPanel command), the bar graphs are not updated (and no
corn in un ications overhead is incurred).

(inject-message destination-processor array & optional start end)
Send a message to a logical processor, pretending to be from another logical processor.
This function may be used by the bootstrap functions of an emulation experiment to
start up an emulated machine.

(read-nicter emulation-meter-name)
Reads the current value of the system-wide meter emulation-meter-name and returns it
as a Lisp integer.

(average-meter emulation-meter-name)
Reads the current value of the system-wide meter emulation-meter-name and averages
it over the number of logical T.E.'s executing in the current emulation experiment.

(read-processor-meter processor-meter-name)
Reads ,he current value of the per-T.E. meter processor-meter-name for each logical
T.E., and returns an array of values returns as well as the number of T.E.'s that
supplied values for that meter.

5. Example

The following pages contain an example of an emulation experiment, named
SIMPLE since it defines a trivial two-T.E. von-Neumann architecture comprised of a CPU
and a memory box.

. . ,-

-89 -

;;;-*- Mode: Lisp; Package: (SIMPLE GLOBAL 1000.); Base: 10. --

Definition of the SIMPLE emulation experiment, which emulates
a standard von Neumann architecture consisting of a CPU and a
MEMORY, connected via a "bus" simulated by the MEF.

Definitional interfaces to the MEF.
This form specifies the name of the experiment and its configuration.

(MEF:define-emulation-experiment
"SIMPLE" :interactive 't

:long-name "Simple CPU//Memory Machine"
:number-of-processors 2
:configuration '((0 cpu) (I memory))
:left-graph '("Memory Accesses//Instruction" 30. 1)
:right-graph '("Stack Depth" 100. 1))

Where the stack begins in memory. Stack grows upward.
(defconstant stack-base 2048.)

The CPU part of the system has all of the standard parts.
Note that we "cache the stack on the processor board;" i.e., the stack
is separate from the memory.

(MEF:define-processor-variables cpu
(Pc 0) Program counter.
(cc 0) Condition code.
(fp stack-base) Frame pointer.
(sp stack-base) Stack pointer.
(registers (make-array 8. :type art-q :initial-value 0)))

The MEMORY part of the system simply contains a small 32-bit wide memory.
(MEF:define-processor-variables memory

(memory (make-array 4096. :type art-q :initial-value 0)))

;;; Notify the MEF of these two new kinds of processor.
(MEF:define-processor cpu simple cpu start-cpu cpu-status 1.0)
(MEF:define-processor memory simple memory start-memory memory-status 1.0)

Definition of the INSTRUCTION abstraction; an instruction to the CPU
stored in the MEMORY's memory. An INSTRUCTION is composed of
6 bits of opcode and two addresses, each composed of
3 bits of address code, and 10 bits of address.

(defmacro instruction-opcode (word) '(%logldb (byte 6. 26.) word))
(defmacro instruction-adcodel (word) '(%logldb (byte 3. 23.) ,word))
(defmacro instruction-addrl (word) '(%logldb (byte 10. 13.) ,word))
(defmacro instruction-adcode2 (word) '(%logldb (byte 3. 10.) ,word))
(defmacro instructioa-addr2 (word) '(%logldb (byte 10. 0.) ,word))

(defmacro make-instruction (opcode adcodel addrl adcode2 addr2)
'(%logdpb ,opcode (byte 6. 26.)

(%logdpb ,adcodel (byte 3. 23.)
(%logdpb ,addrl (byte 10. 13.)

(%logdpb ,adcode2 (byte 3. 10.) ,addr2)))))

These are the defined address codes, or simple addressing modes.
(defconstant register-adcode 0) ; Address is register number.
(defconstant memory-adcode 1) ; Address is straight into memory.
(defconstant stack-adcode 2) ; Address is stack offset.
(defconstant immediate-adcode 3); Address is immediate.
(defconstant fp-adcoda 4) Address is frame offset.
(defconstant arg-adcode 5) ; Address is argument number.

Functions for defining and storing CPU ALU functions.
(defvar alu-functions (make-array 64. :type art-q :initial-value nil))

(defmacro define-alu-function (name number arglist &body body)
'(progn 'compile

(setf (aref alu-functions ,number) ',name)
(defun (:property ,name alu-function) ,arglist . ,body)
(defprop name number alu-function-number)))

.°

-. -.-.-.-.---. .."..--.. ..--.,-..-....".-..- :.. --g -;'T ,-'.: ",". T " --' -'T- ' --' - :'i "Z

- 90 --

; Definition of the stack frame. All numbers are positive offsets frame ptr (FP).
defconstant old-fp 0) (defconstant old-sp 1) (defconstant old-cc 2)
defconstant old-pc 3) (defconstant frame-size 4)

; Constant PE numbers.
defconstant cpu-pe 0) (defconstant memory-pe 1)

; Condition codes
defconstant cc-clear 0) (defconstant cc-overflow 1) (defconstant cc-negative 2)
defconstant cc-zero 3) (defconstant cc-positive 4)

* Memory requests.
defconstant memory-read-request #/R)
defconstant memory-write-request #/W)
defconstant memory-load-request #/L)

Standard message buffers for inter-processor interaction. These
* message buffers by convention are two words (eight bytes) long.

Protocols are stored in the top byte, two byte fields in the
; low bytes of the first word, and word fields in the second word.
defmncro message-type (message-buffer) '(aref ,message-buffer 3))

defmacro put-two-byte-field (number message-buffer)
(once-only (number)

'(progn (setf (aref .message-buffer 0) (1db (byte 8 0) ,number))
(setf (aref ,message-buffer 1) (1db (byte 8 8) number)))))

defmacro get-two-byte-field (message-buffer)
'(dpb (aref .message-buffer 1) (byte 8 8) (aref ,message-buffer 0)))

; The command interface for the controller screen while the emulation is running.
Array to assemble SIMPLE code into.

defresource assembly-array () :constructor (make-array 2 6. :type art-q)
:initial-copies I)

The message buffer (see above) for the command interface.
defvar inject-message-buffer (make-array 8 :type art-8b :initial-value 0))
defvar inject-message-word (make-array 2 :type art-q

:displaced-to inject-message-buffer))

Command to link/load a file of SIMPLE code.
define-command assemble simple "Assemble and load a function in SIMPLE code."
((:arguments (file :pathname "File to assemble and load." :noise-strirmg "file")))
(using-resource (array assembly-array)

(let ((end (assemble file array 0))
(bytes (make-array 1024. :type art-8b :displaced-to array)))

(setf (messagu-type inject-message-buffer) memory-load-request)
(put-two-byte-field 0 inject-message-buffer)
(setf (aref inject-message-word 1) end)
(MEF:inject-message memory-pe inject-message-buffer)
(MEF:inject-message memory-pe bytes 0 (* end 4)))))

Command to run the machine from a given PC with a set of arguments.
define-command run simple "Run the SIMPLE emulation."
((:arguments (arguments :integer "Arguments to the loaded function."

:noise-string "arguments" :times (0)))
(:control-arguments (start :pc :integer "Initiate program counter."

:noise-string "starts at" :default 0)))
(format t "-&Starting at PC -D, with -D argument-:P.-" start (length arguments))
(setf (aref inject-message-buffer 0) (length arguments))
(MEF:inject-message cpu-pe inject-message-buffer 0 1)
(loop for number in (reverse arguments) doing

(setf (aref inject-message-word 0) number)
(MFF:inject-message cpu-pe inject-message-buffer 0 4))

(setf (aref inject-message-buffer 0) start)
(MEF:inject-message cpu-pe inject-message-buffer 0 1))

%- .

S..,

-91- i

Definition of the SIMPLE CPU processor.

The CPU's message buffer (see above).
defvar cpu-message-buffer (make-array 8 :type art-8b :initial-value 0))
defvar cpu-message-word
(make-array 2 :type art-q :displaced-to cpu-message-buffer))

Total number of instructions/memory accesses
executed since last RUN command.

defvar total-instructions 0)
defvar memory-accesses 0)

This is the toplevel of the CPU. It reads incoming messages,
which at this level are assumed to be simply arguments and starting PC's.

defun start-cpu (ignore ignore)
(loop doing

('catch 'abort-cpu
(setf sp stack-base fp stack-base cc 0 pc 0)
(loop doing

;; Clear instruction count and access count.
(setq total-instructions 1 memory-accesses 0)

Read in any arguments, push them on the stack.
(loop repeat (MEF:read-message-byte) doing

(MEF:read-message cpu-message-buffer 0 4)
(stack-push (aref cpu-message-word 0)))

Read in the starting address, push phony stack frame.
(initiate-call (MEF:reaJ-message-byte))

Run.
('catch 'toplevel (run-cpu))
;; Pick up return value and display it.
(MEF:send-graph-message 0 0 0)
(MEF:send-graph-message 1 0 0)
(MEF:write-display-message "The answer is -D."

(sta,,-pop))))))

Standard function for ascertaining the status of a CPU processor.
defun cpu-status () ..
(format nil "CPU. PC = -D, FP = -D, SP = -0, CC - -0" pc fp sp cc))

Push a stack frame and update the PC if necessary.
defun initiate-call (&optional new-pc)
(memory-write (+ sp old-fp) fp)
(memory-write (+ sp old-sp) sp)
(memory-write (+ sp old-cc) cc)
(memory-write (+ sp old-pc) pc)
(setf tp sp sp (+ sp frame-size) cc 0)
(and new-pc (setf pc new-pc)))

Fetch a single word from memory.
defun memory-fetch (address)
(incf memory-accesses)
(setf (message-type cpu-message-buffer) memory-read-request)
(put-two-byte-field address cpu-message-buffer)
(MEF:write-message memory-pe cpu-message-buffer 0 8)
(MEO:read-message cpu-message-buffer 0 4)
(aref cpu-message-word 0))

Write a single word to memory.
defun memory-write (address value)
(incf memory accesses)
(setf (message-type cpu-message-buffer) memory-write-request)
(put-two-byte-field address cpu-message-buffer)
(setf (aref cpu-message-word 1) value)
(MEF:write-message memory-pe cpu-message-buffer 0 8))

.. C-. -

-92-

leal instruction processor. Loops on instruction at PC doing execution.
in run-cpu (&aux instruction)
3op doing

Update memory accesses/instruction and stack size bars.
(MEF:send-graph-message
0 0 (fixr (* 10.0 (// (float memory-accesses) total-instructions))))

(MEF:send-graph-message 1 0 (- sp stack-base))

Fetch instruction at PC.
(setq instruction (memory-fetch pc))
(incf total-instructions)
(incf pc) (decf memory-accesses)

Call the referenced function, bind results and branch if necessary.
We should get back an "answer" and a "disposition" which specifies
the kind of instruction which got executed.

(multiple-value-bind (answer disposition)
(funcall (get (aref alu-functions (instruction-opcode instruction))

'alu-function)

(dereference (instruction-adcodel instruction)
(instruction-addrl instruction))

(dereference (instruction-adcode2 instruction)
(instruction-addr2 instruction)))

(selectq disposition
(:store (store-value answer

(instruction-adcodel instruction)
(instruction-addrl instruction)))

(:branch (if (- answer 1)
(setf pc (instruction-addrl instruction))
(setf pc (instruction-addr2 instruction))))))))

)ereference an address-code/address pair into a value.
in dereference (adcode addr)
alect adcode
(memory-.dcode Memory reference.
(memory-fetch addr))

(register-adcode Register reference.
(aref registers addr))

(stack-adcode Stack reference.
(memory-fetch (+ sp (sign-extend addr))))

(immediate-adcode Immediate value.
(sign-extend addr))

(fp-adcode Stack reference offset from frame pointer.
(memory-fetch (+ fp (sign-extend addr))))

(arg-adcode Stack reference to an argument.
(memory-fetch (+ (- addr) fp -1)))

(T (ferror "Unknown address code -0." adcode))))

Store a value at a location specified by an address-code/address pair.
in store-value (value adcode addr)
Blect adcode
(memory-adcode Memory reference.
(memory-write addr value))

(register-adcode Register reference.
(setf (aref registers addr) value))

(stack-adcode Stack reference.
(memory-write (+ sp (sign-extend addr)) value))

(immediate-adcode ; Illegal immediate value.
(ferror "You may not store into an immediate value."))

(fp-adcode ; Stack reference offset from frame pointer.
(memory-write (+ fp (sign-extend addr)) value))

(arg-adcode ; Stack reference to an argument.
(memory-write (+ (- addr) fp -1) value))

(T (ferror "Unknown address code -D." adcode))))

Sign extend a ten hit address to a 32-bit LispMachine flxnum.
in siin-extend (lObit-number)
r (zerop (1db (byte 1 9.) 1Obit-number)) 1Obit-number

(Iogdpb -1 (byte 22. 10.) tObit-number)))

..
......................................

- 93 -

rhe ALU functions that are to be emulated.

.OAO and arithmetic functions.

ine-alu-function load 0 (ignore value) (values value :store))

ne-alu-function add 1 (valuel value2)

,ithmetic-processor (+ valuel value2)))

ine-alu-function mult 2 (valuel value2)
'ithmetic-processor (0 valuel value2)))

ine-alu-function sub 3 (valuel value2)
ithmetic-processor (- valuel value2)))

ine-alu-function div 4 (valuel value2)
-ithmetic-processor (fix (// (float valuel) value2))))

in arithmetic-processor (number)
)nd ((or (floatp number) (bigp number))

(setf cc cc-overflow) (setq number 0))
((minusp number) (setf cc cc-negative))
((zerop number) (setf cc cc-zero))
(T (setf cc cc-positive)))

ilues number :store))

itack operations.

ine-alu-function push 10. (value ignore) (stack-push value))

ine-alu-function pop 11. (ignore ignore) (values (stack-pop) :store))

in stack-push (value) (memory-write sp value) (incf sp'))

in stack-pop () (decf sp) (memory-fetch sp))

3ranching functions based on input values.

ine-alu-function bneg 20. (value ignore) (if (< value 0) (values 2 :branch)))

ine-alu-function bpos 21. (value ignore) (if (> value 0) (values 2 :branch)))

ine-alui-function bzero 22. (value ignore) (if (zerop value) (values, 2 :branch)))

3ranching function based on condition code.
ine-alui-function bcc 23. (condition ignore)

(if (- condition cc) (values 2 :branch)))

a11/Return and assorted.
ine-alu-function call 30. (ignore ignore) (initiate-call) (values 1 :branch))

mne-alu-function return 31. (value ignore)
-t ((new-fp (memory-fetch (+ fp old-fp)))

(new-sp (rmemory-fetch (~fp old-sp)))
(new-cc (memory-fetch (~fp old-cc)))
(new-pc (memory-fetch (+ fp old-pc))))

memory-write fp value)
'setf fp new-fp sp (1+ new-sp) cc new-cc pc new-pc)
'if (- new-fp tack-base) (*throw 'toplevel nil))

;top the machine (by aborting the CPU processor).
ine-alu-function stop 40. (ignore ignore) (*throw *abort-cpu nil))

L RD-A±57 662 GENERIC SOFTNRRE FOR EMULATING MULTIPROCESSOR2/
ARCHITECTURES(U) MASSACHUSETTS INST OF TECH CAMBRIDGE

I LAB FOR COMPUTER SCIENCE R M SOLEY MAY 85

UNCLASSIFIED MIT/LCS/TR-339 N888i4-75-C-e66i F/G 9/2 NL

. .77.. . . . - , .

,2=o11111 1.0L2
liii! 12, 30 11112-0L.

IIIII 8
IIIIL25 lJ.4 -6

MICROCOPY RESOLUTION TEST CHART
NATIONAI RIIRFAII (nF qTANfnapn.Q6I A

dNil

%'°, .. .

%,..

-94-

;;; A character buffer.
(defvar string (make-array 32. :type art-string :leader-list '(0)))

:;; Print out a character (or two).
(define-alu-function print 41. (charl char2)

(array-push-extend string chari)
(or (zerop char2) (array-push-extend string char2))
nil)

Finish print, sending to the controller console.
(define-alu-function terpri 42. (ignore ignore)

(MEF:write-display-message string)
(setf (array-leader string 0) 0)
nil)

;;; Definition of the SIMPLE MEMORY processor.

:;; The memory processor's message buffer.
(defvar memory-message-buffer (make-array 8 :type art-8b :initial-value 0))
(defvar memory-message-word

(make-array 2 :type art-q :displaced-to memory-message-buffer))

; The toplevel function for the memory processor. Read memory requests.
;;; process, and return values if necessary.
(defun start-memory (ignore ignore)

(loop doing
(MEF:read-message memory-message-buffer 0 8)
(select (message-type memory-message-buffer)

(memory-read-request (handle-read-request)
(memory-write-request (handle-write-request))
(memory-load-request (handle-load-request))
(T (ferror "Illegal memory request.")))))

;;; Standard function for ascertaining the status of a memory processor.
(defun memory-status ()

(format nil "MEMORY. Word 0 - -D" (aref memory 0)))

;;; Handle a memory READ request.
(defun handle-read-request ()

(setf (aref memory-message-word 1)
(aref memory (get-two-byte-field memory-message-buffer)))

(MEF:write-message cpu-pe memory-message-buffer 4 8))

;;; Handle a memory WRITE request.
(defun handle-write-request (&aux address)

(setq address (get-two-byte-field memory-message-buffer))
(setf (aref memory address) (aref memory-message-word 1)))

;;; Handle a memory bulk LOAD request.
(defun handle-load-request (&aux start length)
(setq start (get-two-byte-field memory-message-buffer)

length (aref memory-message-word 1))
(loop repeat length for offset from start doing

(MEF:read-message memory-message-buffer 0 4)
(setf (aref memory offset) (aref memory-message-word 0))))

'-..

,I

...............................--....-.---.-,- --- --.....
.--. ,

- -. '%

-95--

;;; An assembler for SIMPLE code.

;;Read code from PATHNAME. output code into ARRAY (art-q).
Puts memory it uses after end of code.

(defun assemble (pathname array &optional (offset 0) &aux list tags)
(pkg-bind 'SIMPLE

(with-open-file (stream pathname :direction :in :characters 't)
(loop with token and index and arg and count - offset

as input = (send stream :line-in)
while (and input (not (zerop (string-length input)))) doing
(setq index (string-search-not-set '(#\space #\tab #\c-L) input))
(when (and index (neq (aref input index) #i;))
(multiple-value (token index)

(read-from-string input nil index
(string-search-char #/: input)))

(when (- (aref input index) #/:)
(push (list token count) tags)
(multiple-value (token index)
(read-from-string input nil (1+ index))))

(multiple-value (arg index) (read-argument input index))
(incf count)
(push (list token arg (read-argument input index)) list))))

(loop for (inst addrl addr2) in (nreverse list) and count from offset
finally (return (1+ count)) do
(setf (aref array count)

(%logdpb (instruction-name->number inst) (byte 6. 26.)
(%logdpb (clear-address addrl tags) (byte 13. 13.)

(clear-address addr2 tags)))))))

Change an address that could not be computed at scan time into an address
(i.e., branch and call targets and the like).

* (defun clear-address (address tags &aux lookup)
(cond ((null address) (dpb register-adcode (byte 3 10.) 0))

((numberp address) address)
((setq lookup (assq address tags))
(dpb memory-adcode (byte 3 10.) (second lookup)))

(T (ferror "Unknown address: -S." address))))

Find the opcode for a given instruction.
(defun instruction-name->number (name) (get name 'alu-function-number))

Tools for disassembling assembled portions of memory. -

(defun unassemble (array &optional (from 0) to)
(or to (setq to (array-length array)))
(loop with word for index from from to to doing

(or (setq word (aref array index)) (return))
(format t "-&-:4D: -8A" index

(aref alu-functions (instruction-opcode word)))
(format-address (instruction-adcodel word) (instruction-addrl word))
(format t ". ")
(format-address (instruction-adcode2 word) (instruction-addr2 word))
(terpri)))

(defun format-address (adcode addr) -
(select adcode
(memory-adcode (format t "-D" addr))
(register-adcode (format t "R-D" addr))
(stack-adcode (format t "SPI-D" (sign-extend addr)))
(immediate-adcode (format t "#-D" (sign-extend addr)))
(fp-adcode (format t "FPI-D" (sign-extend addr)))
(arg-adcode (format t "ARGI-D" addr))
(T (format t "UNKNOWN"))))

-. lm

. W;

-96-

" ; Translate a symbolic address into an address-code/address pair.
(defun read-argument (string index &aux end)

(setq index (string-search-not-set '(#\tab #\space) string index))
(setq end (or (string-search-set '(#\tab #\space #/, #/;) string index)

(string-length string)))
(cond ((mem #'string-equal (substring string index end)

'(rO rl r2 r3 r4 r5 r6 r7))
A REGISTER specification.

(values (dpb register-adcode (byte 3 10.)
(- (aref string (1+ index)) #/0))

(1+ end)))
((string-equal "#CC" string 0 index 3 (+ index 3))

A CONDITION CODE specification.
(let ((word (substring string (1+ index) end)))

(values (dpb immediate-adcode (byte 3 10.)
(cond ((string-equal word "CC-NEGATIVE") cc-negative)

((string-equal word "CC-POSITIVE") cc-positive)
((string-equal word "CC-ZERO") cc-zero)
((string-equal word "CC-OVERFLOW") cc-overflow)
(T (ferror "Unrecognized condition: -S" word))))

(1+ end))))
((= (aref string index) DI")

A CHARACTER specification.
(values (dpb immediate-adcode (byte 3 10.)

(aref string (1+ index))) (1+ end)))
((= (aref string index) #/N)

An IMMEDIATE specificiation.
(values (dpb immediate-adcode (byte 3 10.)

(read-from-string string nil (1+ index) end))
(1+ end)))

((string-equal "ARGI" string 0 index 4 (+ index 4))
;; An ARGUMENT specification.
(values (dpb arg-adcode (byte 3 10.)

(read-from-string string nil (+ index 4) end))
(1+ end)))

((string-equal "SPI" string 0 index 3 (+ index 3))
An STACK OFFSEt specification.

(values (dpb stack-adcode (byte 3 10.)
(read-from-string string nil (+ index 3) end)).

(1+ end)))
((string-equal "FPI" string 0 index 3 (+ index 3))
;; An STACK OFFSET FROM FRAME POINTER specification.
(values (dpb fp-adcode (byte 3 10.)

(read-from-string string nil (+ index 3) end))
(1+ end)))

(T
A SYMBOLIC ADDRESS (i.e., branch/call target).

(values (read-from-string string nil index end) (1+ end)))))

.2.

OFFICIAL1 DISTRIBUTION LIST

1985

Director 2 Copies
Information Processino Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 Copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 Copies
Naval Research Laboratory
Washington, DC 20375.

Defense Technical Information Center 12 Copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 Copies
Office of Computina Activities
1800 G. Street, N.W.
Washinaton, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 Copy.
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

Dr. G. Hopper, USNR 1 Copy
NAVDAC-OOH
Department of the Navy
Washington, DC 20374

. .. * . .
**.** * . .o. .. _ *. . *

Q ~~~~~~~~~~~~~~~~.,.°, .', .°-.•" .. ,.'D° °°. -. ,° " -•° •. , . '. "• °-. "° 0 ° . ."'' .

FILMED

9-85

DTIC

